【題目】已知函數(shù),,

時(shí),求函數(shù)的最大值和最小值;

⑵求的取值范圍,使上是單調(diào)函數(shù).

【答案】(1)當(dāng)x時(shí),f(x)取得最小值,為-,當(dāng)x=-1時(shí),f(x)取得最大值,為;(2).

【解析】

試題代入,通過配方求出二次函數(shù)的對(duì)稱軸,求出函數(shù)的最大值和最小值;

通過配方求出二次函數(shù)的對(duì)稱軸,據(jù)二次函數(shù)的單調(diào)性與對(duì)稱軸的關(guān)系,列出不等式,通過解三角不等式求出的取值范圍;

解析:(1)當(dāng)θ=-時(shí),

f(x)=x2x-1=x∈[-1, ].

∴當(dāng)x時(shí),f(x)取得最小值,為-;

當(dāng)x=-1時(shí),f(x)取得最大值,為.

(2)函數(shù)f(x)=(x+tan θ)2-1-tan2θ的圖象的對(duì)稱軸為x=-tan θ.

yf(x)在區(qū)間[-1,]上單調(diào),

∴-tan θ≤-1或-tan θ,

即tan θ≥1或tan θ≤-.

θ,

θ的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(1,+∞)上的函數(shù)fx)=

(1)當(dāng)m≠0時(shí),判斷函數(shù)fx)的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)m=時(shí),求解關(guān)于x的不等式fx2-1)>f(3x-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等的解集
(1)求不等式 ≥1的實(shí)數(shù)解;
(2)解關(guān)于x的不等式 >1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·吉林期末]一個(gè)袋中裝有6個(gè)大小形狀完全相同的球,球的編號(hào)分別為1,2,3,4,5,6.

(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和為6的概率;

(2)先后有放回地隨機(jī)抽取兩個(gè)球,兩次取的球的編號(hào)分別記為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +log2(6﹣x)的定義域是(
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)內(nèi)有極值.

(1)求實(shí)數(shù)a的取值范圍;

(2)x1(0,1),x2(1,+).求證:f(x2)-f(x1)>e+2-.注:e是自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+x2﹣bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當(dāng)b=﹣1時(shí),設(shè)g(x)=f(x)﹣2x2 , 求證函數(shù)g(x)只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若的極小值為,求的值;

(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測試,測試成績的分組區(qū)間為80,90、90,100100,110、110,120、120,130,由此得到兩個(gè)班測試成績的頻率分布直方圖:

(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個(gè)班在這次測試中成績的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說明理由;

成績小于100分

成績不小于100分

合計(jì)

甲班

50

乙班

50

合計(jì)

100

(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測試中,甲班的平均分是105.8,請你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分?

附:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案