16.一個盒子中裝有5個編號依次為1,2,3,4,5的球,這5個球除號碼外完全相同,有放回地連續(xù)抽取兩次,每次任意地取出一個球.
(1)用列舉法列出所有可能的結(jié)果;
(2)求事件A=“取出球的號碼之和不小于6的概率”.

分析 (1)由題意知共有25種結(jié)果,用一對有序數(shù)對表示出可能出現(xiàn)的情況,第一個數(shù)字表示第一次抽到的數(shù)字,第二個數(shù)字表示第二次抽到的數(shù)字,寫出所有的情況.
(2)本題是一個古典概型,根據(jù)第一問列舉出的所有結(jié)果得到試驗發(fā)生包含的事件數(shù)是25,取出球的號碼之和不小于6的事件數(shù)是15,根據(jù)概率公式得到結(jié)果.

解答 解:(1)所有可能結(jié)果為25.
列舉如下:(1,1),(1,2),(1,3),(1,4),(1,5);(2,1),(2,2),(2,3),(2,4),(2,5);(3,1),(3,2),(3,3),(3,4),(3,5);(4,1),(4,2),(4,3),(4,4),(4,5);(5,1),(5,2),(5,3),(5,4),(5,5).
(2)取出球的號碼之和不小于6的是(1,5),(2,4),(2,5),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共15種,
所以$P(A)=\frac{15}{25}=\frac{3}{5}$.

點評 本題考查古典概型問題,這種問題在高考時可以作為一道解答題,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.對于函數(shù)f(x),定義f0(x)=f(x),f1(x)=f'0(x),…,fn(x)=f'n-1(x)(n∈N*),若f(x)=cosx,則f2014(x)=( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,則y=f[f(x)]-4的零點為( 。
A.$-\frac{π}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列說法:
①函數(shù)$y=2tan({2x+\frac{π}{3}})$的對稱中心是$({\frac{kπ}{2}-\frac{π}{6}\;,\;\;0})$;
②函數(shù)$f(x)=2tan({-2x+\frac{π}{4}})$單調(diào)遞增區(qū)間是$({\frac{kπ}{2}-\frac{π}{8}\;,\;\;\frac{kπ}{2}+\frac{3π}{8}})({k∈Z})$;
③函數(shù)$y=2tan({2x+\frac{π}{3}})$的定義域是$\left\{{x|x≠kπ+\frac{π}{12}({k∈Z})}\right\}$;
④函數(shù)y=tanx+1在$[{-\frac{π}{4}\;,\;\;\frac{π}{3}}]$上的最大值為$\sqrt{3}+1$,最小值為0.
其中正確說法有幾個( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.化簡${|{-0.01}|^2}-{({-\frac{5}{8}})^0}-{3^{{{log}_3}2}}+{({lg2})^2}+lg2lg5+lg5$的結(jié)果為-1.9999.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}、{bn}滿足a1=b1=1,an+1=an+2bn,bn+1=an+bn,則下列結(jié)論正確的是( 。
A.只有有限個正整數(shù)n使得an<$\sqrt{2}$bnB.只有有限個正整數(shù)n使得an>$\sqrt{2}$bn
C.數(shù)列{|an-$\sqrt{2}$bn|}是遞增數(shù)列D.數(shù)列{|$\frac{{a}_{n}}{_{n}}$-$\sqrt{2}$|}是遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,則$f(\overline{{z_1}-{z_2}})$=( 。
A.4+2iB.4+3iC.4-2iD.4-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在等比數(shù)列{an}中,a1=1,a5=16,則公比q為(  )
A.±2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若x=-1是函數(shù)f(x)=x(x-a)2的極小值點,則a=( 。
A.0B.-1C.-2D.-3

查看答案和解析>>

同步練習冊答案