3.若全集U={0,1,2,3,4,5,6},A={1,3},B={3,5},則∁U(A∪B)=( 。
A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}

分析 根據(jù)集合的基本運算進行求解即可.

解答 解:∵全集U={0,1,2,3,4,5,6},A={1,3},B={3,5},
∴A∪B={1,3,5},
則∁U(A∪B)={0,2,4,6},
故選:D

點評 本題主要考查集合的基本運算,根據(jù)補集和并集的定義是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=xex,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*
(1)證明數(shù)列{an-2n}是等差數(shù)列,并求{an}的通項公式
(2)設bn=$\frac{{a}_{n}}{{2}^{n}}$-1,求bn的前n和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.化簡${|{-0.01}|^2}-{({-\frac{5}{8}})^0}-{3^{{{log}_3}2}}+{({lg2})^2}+lg2lg5+lg5$的結(jié)果為-1.9999.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=x2和g(x)=lnx,作一條平行于y軸的直線,交f(x),g(x)圖象于A,B兩點,則|AB|的最小值為$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,則$f(\overline{{z_1}-{z_2}})$=(  )
A.4+2iB.4+3iC.4-2iD.4-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列四個圖中,函數(shù)y=$\frac{ln|x+1|}{x+1}$的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設f(x)是R上的可導函數(shù),且f′(x)≥-f(x),f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.則f(1)的值為$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知F1、F2分別是雙曲線x2-4y2=4的左、右焦點,點P在該雙曲線的右支上,且|PF1|+|PF2|=6,則cos∠F1PF2=$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案