【題目】下面有五個(gè)命題:

①函數(shù)y=sin4x-cos4x的最小正周期是

②終邊在y軸上的角的集合是{α|α=;

③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);

④把函數(shù);

⑤函數(shù)

其中真命題的序號(hào)是__________(寫出所有真命題的編號(hào)

【答案】 ④.

【解析】

根據(jù)三角函數(shù)的相關(guān)性質(zhì)對(duì)五個(gè)命題分別分析、判斷后可得其中的真命題

對(duì)于①,由于

所以函數(shù)的最小正周期為因此命題①正確.

對(duì)于②,終邊在y軸上的角的集合是,因此命題②不正確.

對(duì)于③,在同一坐標(biāo)系中,由三角函數(shù)的性質(zhì)可得,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象只有在原點(diǎn)處有唯一的公共點(diǎn).因此命題③不正確.

對(duì)于④,把函數(shù)所得圖象對(duì)應(yīng)的解析式為

因此命題④正確

對(duì)于⑤,函數(shù),所以函數(shù)在區(qū)間上單調(diào)遞增.因此命題⑤不正確.

綜上可得所有正確命題的序號(hào)為① ④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a為常數(shù)

1)判斷fx)在定義域內(nèi)的單調(diào)性

2)若fx)在上的最小值為,求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩名運(yùn)動(dòng)員某賽季一些場(chǎng)次得分的莖葉圖,據(jù)圖可知以下說(shuō)法正確的是 _____.(填序號(hào))

①甲運(yùn)動(dòng)員的成績(jī)好于乙運(yùn)動(dòng)員;②乙運(yùn)動(dòng)員的成績(jī)好于甲運(yùn)動(dòng)員;

③甲、乙兩名運(yùn)動(dòng)員的成績(jī)沒有明顯的差異;④甲運(yùn)動(dòng)員的最低得分為0分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲?/span>)分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosx(x∈(0,2π))有兩個(gè)不同的零點(diǎn)x1、x2 , 方程f(x)=m有兩個(gè)不同的實(shí)根x3、x4 . 若把這四個(gè)數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)m的值為(
A.
B.
C.
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足 , = = =﹣2,動(dòng)點(diǎn)P,M滿足 =1, = ,則| |2的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,DPB上一點(diǎn),且CD平面PAB

(1)求證:AB平面PCB

(2)求異面直線APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形OABP是平行四邊形,過點(diǎn)P的直線與射線OA,OB分別相交于點(diǎn)M,N,若 ,

(1)把y用x表示出來(lái)(即求y=f(x)的解析式);
(2)設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn=f(Sn1)(n≥2且n∈N*),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.

(Ⅰ)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;

(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案