【題目】如圖, 是邊長(zhǎng)為2的正方形邊的中點(diǎn),將分別沿、折起,使得點(diǎn)與點(diǎn)重合,記為點(diǎn),得到三棱錐

(Ⅰ)求證:平面平面;

(Ⅱ)求點(diǎn)到平面的距離.

【答案】(Ⅰ)詳見(jiàn)解析(Ⅱ)

【解析】試題分析: (Ⅰ)由 ,可得平面,又在平面內(nèi),即可證得面面垂直;(Ⅱ)解:設(shè)點(diǎn)到平面的距離為,根據(jù)三棱錐等體積可得

,根據(jù)體積公式代入即可求得

試題解析:(Ⅰ)證明:∵,∴

于點(diǎn), 在平面內(nèi),∴平面

在平面內(nèi),∴平面平面

(Ⅱ)解:設(shè)點(diǎn)到平面的距離為

依題意可知,三角形是底邊長(zhǎng)為2,高為2的三角形,

所以其面積為

由(Ⅰ)知平面,易知是邊長(zhǎng)為2的等邊三角形,其面積為 ,

所以,

,∴,∴

點(diǎn)睛:本題考查面面垂直的判定以及等體積法求點(diǎn)線(xiàn)距,屬于中檔題目. 兩平面垂直的判定有兩種方法:(1)兩個(gè)平面所成的二面角是直角;(2)一個(gè)平面經(jīng)過(guò)另一平面的垂線(xiàn).掌握基本的判定和性質(zhì)定理外還應(yīng)理解線(xiàn)線(xiàn)、線(xiàn)面、面面垂直的轉(zhuǎn)化思想,逐步學(xué)會(huì)綜合運(yùn)用數(shù)學(xué)知識(shí)分析解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,墻上有一壁畫(huà),最高點(diǎn)A離地面4米,最低點(diǎn)B離地面2米.觀(guān)察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀(guān)賞該壁畫(huà),設(shè)觀(guān)賞視角∠ACB=θ.

(1)若a=1.5,問(wèn):觀(guān)察者離墻多遠(yuǎn)時(shí),視角θ最大?
(2)若tanθ= ,當(dāng)a變化時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中ab

(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;

(2)試確定ab,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A、B兩種菜可供選擇.調(diào)查表明,凡是在這星期一選A種菜的,下星期一會(huì)有20%改選B種菜;而選B種菜的,下星期一會(huì)有30%改選A菜.用an , bn分別表示在第n個(gè)星期選A的人數(shù)和選B的人數(shù),若a1=300,則a20=(
A.260
B.280
C.300
D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿(mǎn)足,數(shù)列滿(mǎn)足,且為等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的動(dòng)直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn).當(dāng)直線(xiàn)的斜率是時(shí),.

(1)求拋物線(xiàn)的方程;

(2)設(shè)線(xiàn)段的中垂線(xiàn)在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)與圓相交于不同的兩點(diǎn)

1求線(xiàn)段的中點(diǎn)的軌跡的方程;

2是否存在實(shí)數(shù),使得直線(xiàn)與曲線(xiàn)只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案