精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC的三個頂點坐標分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點A關于直線l的對稱點為D,求△BCD的面積.

【答案】
(1)解:AB中點坐標為(3,0),∴直線l的方程為y= (x﹣3),即x+y﹣3=0;
(2)解:設D(a,b),則 ,∴a=2,b=4,即D(2,4),

直線BC的方程為y+1= (x﹣7),即2x+3y﹣11=0,

D到直線BC的距離d= = ,|BC|= =3 ,

∴△BCD的面積S= =


【解析】(1)求出AB中點坐標,即可求直線l的方程;(2)求出點A關于直線l的對稱點為D,直線BC的方程,即可求△BCD的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】求滿足下列條件的直線方程:
(1)求經過直線l1:x+3y﹣3=0和l2:x﹣y+1=0的交點,且平行于直線2x+y﹣3=0的直線l的方程;
(2)已知直線l1:2x+y﹣6=0和點A(1,﹣1),過點A作直線l與l1相交于點B,且|AB|=5,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,從2009年參加奧運知識競賽的學生中抽出60名,將其成績(均為整數)整理后畫出的頻率分布直方圖如圖所示.觀察圖形,估計這次奧運知識競賽的及格率(大于或等于60分為及格)為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合為集合個非空子集,這個集合滿足:①從中任取個集合都有 成立;②從中任取個集合都有 成立

, , ,寫出滿足題意的一組集合;

, ,寫出滿足題意的一組集合以及集合;

) , 求集合中的元素個數的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足an+1= an2 nan+1(n∈N*),且a1=3.
(1)計算a2 , a3 , a4的值,由此猜想數列{an}的通項公式,并給出證明;
(2)求證:當n≥2時,ann≥4nn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,平面平面,四邊形為菱形,點是棱上不同于 的點,平面與棱交于點, ,

(Ⅰ)求證: ∥平面;

求證: 平面

若二面角的長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數

(1)處取得極值時,若關于x的方程 上恰有兩個不相等的實數根,求實數b的取值范圍.

(2)若對任意的,總存在,使不等式 成立,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上函數f(x),且f(x)+f(﹣x)=0,當x<0時,f(x)=( x﹣8×( x﹣1
(1)求f(x)的解析式;
(2)當x∈[1,3]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S= bccosA.
(1)求角A的大。
(2)若c=8,點D在AC邊上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

同步練習冊答案