【題目】已知圓 : ( )與直線 : 相切,設(shè)點(diǎn) 為圓上一動(dòng)點(diǎn), 軸于 ,且動(dòng)點(diǎn) 滿足 ,設(shè)動(dòng)點(diǎn) 的軌跡為曲線 .
(1)求曲線 的方程;
(2)直線 與直線 垂直且與曲線 交于 , 兩點(diǎn),求 面積的最大值.
【答案】
(1)解:設(shè)動(dòng)點(diǎn) , 因?yàn)? 軸于 ,所以 ,
設(shè)圓 的方程為
由題意得 ,
所以圓 的程為 .
由題意, ,所以 ,
所以,即
將
代入圓 ,得動(dòng)點(diǎn) 的軌跡方程
(2)解:由題意設(shè)直線l 設(shè)直線 與橢圓交于
,聯(lián)立方程 得 ,
,解得 ,
,
又因?yàn)辄c(diǎn) 到直線 的距離 , .
面積的最大值為 .
【解析】本題主要考查軌跡方程,考查直線與橢圓的位置關(guān)系,(1)先根據(jù)題意求出圓的方程,再根據(jù)圓的方程以及向量坐標(biāo)求出動(dòng)點(diǎn)的軌跡方程。
(2)根據(jù)已知條件聯(lián)立方程,利用韋達(dá)定理表示出三角形的面積即可求出。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2=4ρ(cosθ+sinθ)﹣6.若以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)P(x,y)是圓C上動(dòng)點(diǎn),試求x+y的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)x≥0時(shí),f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: < < (參考數(shù)據(jù):ln1.1≈0.095).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=(1+x2)ex﹣a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明f(x)在(﹣∞,+∞)上僅有一個(gè)零點(diǎn);
(3)若曲線y=f(x)在點(diǎn)P處的切線與x軸平行,且在點(diǎn)M(m,n)處的切線與直線OP平行,(O是坐標(biāo)原點(diǎn)),證明:m≤ ﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2017年度進(jìn)行一系列促銷活動(dòng),經(jīng)過(guò)市場(chǎng)調(diào)查和測(cè)算,飲料的年銷售量x萬(wàn)件與年促銷費(fèi)t萬(wàn)元間滿足 .已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3萬(wàn)元,每生產(chǎn)1萬(wàn)件飲料需再投入32萬(wàn)元的生產(chǎn)費(fèi)用,若將每件飲料的售價(jià)定為其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤(rùn)y(萬(wàn)元)表示為促銷費(fèi)t(萬(wàn)元)的函數(shù);
(2)該企業(yè)2017年的促銷費(fèi)投入多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?
(注:利潤(rùn)=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 平面 ,垂足為 ,正四面體(所有棱長(zhǎng)都相等的三棱錐) 的棱長(zhǎng)為2, 在平面 內(nèi), 是直線 上的動(dòng)點(diǎn),當(dāng) 到 的距離為最大時(shí),正四面體在平面 上的射影面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:已知實(shí)數(shù)a,b,則ab>0是a>0且b>0的必要不充分條件,命題q:在曲線y=cos x上存在斜率為 的切線,則下列判斷正確的是( )
A.p是假命題
B.q是真命題
C.p∧( )是真命題
D.( )∧q是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對(duì)數(shù)的底數(shù)).
(1)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a∈ 時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】編號(hào)為 的16名籃球運(yùn)動(dòng)員在某次訓(xùn)練比賽中的得分記錄如下:
運(yùn)動(dòng)員編號(hào) | ||||||||
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
運(yùn)動(dòng)員編號(hào) | ||||||||
得分 | 17 | 26 | 25 | 33 | 22 | 12] | 31 | 38 |
(Ⅰ)將得分在對(duì)應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;
區(qū)間 | |||
人數(shù) |
(Ⅱ)從得分在區(qū)間 內(nèi)的運(yùn)動(dòng)員中隨機(jī)抽取2人,
(i)用運(yùn)動(dòng)員的編號(hào)列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com