【題目】已知函數(shù)fx)=x(1+a|x|),aR

(1)當(dāng)a=-1時,求函數(shù)的零點(diǎn);

(2)若函數(shù)fx)在R上遞增,求實(shí)數(shù)a的取值范圍;

(3)設(shè)關(guān)于x的不等式fx+a)<fx)的解集為A,若,求實(shí)數(shù)a的取值范圍.

【答案】1;(2[0,+∞),(3)(,0).

【解析】

(1)求得a=﹣1時,函數(shù)y的解析式,解方程即可得到所求零點(diǎn);

(2)討論a=0,a>0,a<0,結(jié)合二次函數(shù)的單調(diào)性,即可得到所求范圍;

(3)由題意可得,在[,]上,函數(shù)yfx+a)的圖象應(yīng)在函數(shù)yfx)的圖象的下方.當(dāng)a=0 a>0時,檢驗(yàn)不滿足條件.當(dāng)a<0時,應(yīng)有fa)<f),化簡可得 a2a﹣1<0,由此求得a的范圍.

解:(1)當(dāng)a=-1時,函數(shù)=x1-|x|-,

y=0可得x1-|x|=,

當(dāng)x≥0時,可得x1-x=,解得x=;

當(dāng)x0時,可得x1+x=,解得x=,

綜上可得函數(shù)的零點(diǎn)為;

2fx=,

函數(shù)fx)在R上遞增,

a=0時,fx=xR上遞增;

a≠0,由x≥0時,fx)遞增,可得a0-0,即a0;

x0時,fx)遞增,可得a00,即a0;

a0時,不符題意.

綜上可得a的范圍是[0,+∞);

3)由于fx=,

關(guān)于x的不等式fx+a)<fx)的解集為M,若[-,]A

則在[-,]上,函數(shù)y=fx+a)的圖象應(yīng)在函數(shù)y=fx)的圖象的下方.

當(dāng)a=0時,顯然不滿足條件.

當(dāng)a0時,函數(shù)y=fx+a)的圖象是把函數(shù)y=fx)的圖象

向左平移a個單位得到的,

結(jié)合圖象(右上方)可得不滿足函數(shù)y=fx+a)的圖象

在函數(shù)y=fx)的圖象下方.

當(dāng)a0時,如圖所示,要使在[-]上,

函數(shù)y=fx+a)的圖象在函數(shù)y=fx)的圖象的下方,

只要f+a)<f)即可,

-a+a2++a)<-a2,

化簡可得a2-a-10,解得a,

故此時a的范圍為(,0).

綜上可得,a的范圍為(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個頂點(diǎn)為,半焦距為,離心率,又直線交橢圓于, 兩點(diǎn),中點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若,求弦的長;

3)若點(diǎn)恰好平分弦,求實(shí)數(shù);

4)若滿足,求實(shí)數(shù)的取值范圍并求的值;

5)設(shè)圓與橢圓相交于點(diǎn)與點(diǎn),的最小值,并求此時圓的方程;

6)若直線是圓的切線,證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,,n,.利用這兩組同心圓可以畫出以A、B為焦點(diǎn)的雙曲線. 若其中經(jīng)過點(diǎn)M、N、P的雙曲線的離心率分別是.則它們的大小關(guān)系是 (用連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓C的圓心C( , ),半徑r=
(1)求圓C的極坐標(biāo)方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點(diǎn),求弦長|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|x2<2x},集合B={x|x< },則A∩(RB)等于(
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進(jìn)行自主招生時,需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項(xiàng)的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個結(jié)論:

①甲同學(xué)的閱讀表達(dá)成績排名比他的邏輯思維成績排名更靠前

②乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前

④乙同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前

則所有正確結(jié)論的序號是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.

)求橢圓的方程;

)若點(diǎn)為橢圓上不同于點(diǎn)的點(diǎn),直線與圓的另一個交點(diǎn)為.是否存在點(diǎn),使得? 若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,C為圓周上一點(diǎn),過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E.

(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), ,令, , .

1)寫出, , 的值,并猜想數(shù)列的通項(xiàng)公式;

2)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案