14.若復數(shù)z滿足(1+i)z=i(i是虛數(shù)單位),則z=( 。
A.$\frac{1}{2}+\frac{1}{2}i$B.-$\frac{1}{2}+\frac{1}{2}i$C.-$\frac{1}{2}-\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

分析 由(1+i)z=i,得$z=\frac{i}{1+i}$,再利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,則答案可求.

解答 解:由(1+i)z=i,
得$z=\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱BB1上,且B1D⊥A1F,A1C1⊥A1B1
(Ⅰ)若AC=3,AB=AA1=4,求三棱錐B-DEB1的體積;
(Ⅱ)求證:平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線l1:x+ay-4=0與l2:(a-2)x+y-1=0相交于點P,若l1⊥l2,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若一個三位自然數(shù)的各位數(shù)字中,有且僅有兩個數(shù)字一樣,我們把這樣的三位自然數(shù)定義為“單重數(shù)”,例:112,232,則不超過200的“單重數(shù)”個數(shù)是(  )
A.19B.27C.28D.37

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.2016年下半年,錦陽市教體局舉行了市教育系統(tǒng)直屬單位職工籃球比賽,以增強直屬單位間的交流與合作,組織方統(tǒng)計了來自A1,A2,A3,A4,A5等5個直屬單位的男子籃球隊的平均身高與本次比賽的平均得分,如表所示:
 單位 A1A2  A3A4  A5
 平均身高x(單位:cm) 170 174 176 181 179
 平均得分y62  6466  7068 
(1)根據(jù)表中數(shù)據(jù),求y關(guān)于x的線性回歸方程;(系數(shù)精確到0.01)
(2)若M隊平均身高為185cm,根據(jù)(I)中所求得的回歸方程,預測M隊的平均得分(精確到0.01)
注:回歸當初$\widehat{y}=\widehatx+\widehat{a}$中斜率和截距最小二乘估計公式分別為$\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x≤y}\\{x+y-4≤0}\end{array}\right.$則x2+y2+4x的最大( 。
A.20B.16C.14D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c=$\sqrt{2}$a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個連續(xù)的自然數(shù)?若存在,求△ABC的周長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.己知函數(shù) $f(x)=\frac{x-1}{x}$(其中$x∈[{\frac{1}{2},2}]$)的值域為( 。
A.$[{-1,\frac{1}{2}}]$B.[-1,2]C.$[{\frac{1}{2},2}]$D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C的圓心在直線y=-4x上,且與直線x+y-1=0相切于點P(3,-2).
(Ⅰ)求圓C方程;
(Ⅱ)是否存在過點N(1,0)的直線l與圓C交于E、F兩點,且△OEF的面積是2$\sqrt{2}$(O為坐標原點).若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案