已知向量m=(sin,1),n=(cos,cos2).
(1)若m·n=1,求cos(-x)的值;
(2)記f(x)=m·n,在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
解:(1)∵m·n=1,即sincos+cos2=1,
即sin+cos+=1,
∴sin(+)=.
∴cos(-x)=cos(x-)=-cos(x+)
=-[1-2sin2(+)]
=2·()2-1=-.
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC.
∴2sinAcosB-cosBsinC=sinBcosC,
∴2sinAcosB=sin(B+C),
∵A+B+C=π,
∴sin(B+C)=sinA,且sinA≠0,
∴cosB=,B=,∴0<A<.
∴<+<,<sin(+)<1.
又∵f(x)=m·n=sin(+)+,
∴f(A)=sin(+)+.
故函數(shù)f(A)的取值范圍是(1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆高考數(shù)學(xué)第一輪復(fù)習(xí)測(cè)試題6 題型:044
(理)已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2 sinωx),其中ω>0,函數(shù)f(x)=m·n,若f(x)相鄰兩對(duì)稱軸間的距離為.
(1)求ω的值,并求f(x)的最大值及相應(yīng)x的集合;
(2)在△ABC中,a、b、c分別是A、B、C所對(duì)的邊,△ABC的面積S=5,b=4,f(A)=1,求邊a的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省臨川一中、新余四中2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044
已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.
(1)若f(x)=1,求cos(x+)的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足acosC+c=b,求函數(shù)f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省長(zhǎng)沙市高三第六次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.
(1)若f(x)=1,求cos(-x)的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足acosC+c=b,求函數(shù)f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.
(1)若f(x)=1,求cos(x+)的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足acosC+c=b,求函數(shù)f(B)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com