(矩陣與變換)已知矩陣,矩陣MN對應(yīng)的變換把曲線y=sinx變?yōu)榍C,求C的方程.

 

y=2sin2x

【解析】

試題分析:根據(jù)矩陣的乘法法則 =求出MN,設(shè)p(x,y)是所求曲線C上的任意一點(diǎn),它是曲線y=sinx上點(diǎn)p0(x0,y0)在矩陣MN變換下的對應(yīng)點(diǎn),然后根據(jù)變換的性質(zhì)求出曲線方程.

解答:本小題主要考查矩陣與變換等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.滿分(7分).

【解析】
,(2分)

設(shè)p(x,y)是所求曲線C上的任意一點(diǎn),

它是曲線y=sinx上點(diǎn)p0(x0,y0)在矩陣MN變換下的對應(yīng)點(diǎn),

,(4分)

又點(diǎn)p0(x0,y0)在曲線y=sinx 上,故 y0=sinx0,從而 ,

所求曲線C的方程為y=2sin2x…(7分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 3.3逆矩陣與二元一次方程組(解析版) 題型:選擇題

方程組的增廣矩陣是( )

A.

B.

C.

D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 3.1逆變換與逆矩陣練習(xí)卷(解析版) 題型:填空題

已知矩陣的逆矩陣是,則a+b= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 2.2矩陣乘法的性質(zhì)練習(xí)卷(解析版) 題型:填空題

若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的 .

①m×m,②m×n,③n×m,④n×n.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 2.2矩陣乘法的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

若矩陣是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上( )

A.語文 B.數(shù)學(xué) C.外語 D.都一樣

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 2.1復(fù)合變換與二階矩陣的乘法(解析版) 題型:填空題

已知曲線C:x2+y2=1,對它先作矩陣A=對應(yīng)的變換,再作矩陣B=對應(yīng)的變換,得到曲線C:+y2=1.則實(shí)數(shù)b= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•鎮(zhèn)江二模)已知點(diǎn)M(3,﹣1)繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°后,且在矩陣A=對應(yīng)的變換作用下,得到點(diǎn)N(3,5),求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:填空題

(2014•江蘇模擬)已知矩陣A=,向量=.求向量,使得A2=

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

若圓x2+y2=4上每個(gè)點(diǎn)的橫坐標(biāo)不變.縱坐標(biāo)縮短為原來的,則所得曲線的方程是( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案