【題目】某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表:

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽每人被選到的可能性相同

用表中字母列舉出所有可能的結(jié)果;

設(shè)M為事件“選出的2人來自不同年級(jí)且性別相同”,求事件M發(fā)生的概率.

【答案】1)見解析;(21.

【解析】

試題(1)古典概型的概率問題,關(guān)鍵是正確找出基本事件總數(shù)和所求事件包含的基本事件數(shù),然后利用古典概型的概率計(jì)算公式計(jì)算;(2)當(dāng)基本事件總數(shù)較少時(shí),用列舉法把所有的基本事件一一列舉出來,要做到不重不漏,有時(shí)可借助列表,樹狀圖列舉,當(dāng)基本事件總數(shù)較多時(shí),注意去分排列與組合;(3)注意判斷是古典概型還是幾何概型,基本事件前者是有限的,后者是無限的,兩者都是等可能性.

試題解析:(1)解:從6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽的所有可能結(jié)果為

15種。

2)解:選出的人來自不同年級(jí)且性別相同的所有可能結(jié)果為

6種。

因此事件M發(fā)生的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列幾個(gè)命題:
①命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0≤1
②命題“若a>2且b>2,則a+b>4且ab>4”的逆命題為假命題
③空間任意一點(diǎn)O和三點(diǎn)A,B,C,則 =3 =2 是A,B,C三點(diǎn)共線的充分不必要條件
④線性回歸方程y=bx+a對(duì)應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)中的一個(gè)
其中不正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,求:

(1)點(diǎn)P(4,5)關(guān)于l的對(duì)稱點(diǎn);

(2)直線x-y-2=0關(guān)于直線l對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N* , 存在實(shí)數(shù)x使f(x)<2成立.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求證: +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對(duì)學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對(duì)學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:

善于使用學(xué)案

不善于使用學(xué)案

總計(jì)

學(xué)習(xí)成績優(yōu)秀

40

學(xué)習(xí)成績一般

30

總計(jì)

100

參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
(1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過程);
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對(duì)待學(xué)案的使用態(tài)度有關(guān)?
(3)利用分層抽樣的方法從善于使用學(xué)案的同學(xué)中隨機(jī)抽取6人,從這6人中抽出3人繼續(xù)調(diào)查,設(shè)抽出學(xué)習(xí)成績優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是( )
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式V=
A.2寸
B.3寸
C.4寸
D.5寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用X表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京故宮博物院成立于19251010日,是在明、清朝兩代皇宮及其宮廷收藏的基礎(chǔ)上建立起來的中國綜合性博物館,每年吸引著大批游客參觀游覽下圖是從2012年到2017年每年參觀人數(shù)的折線圖根據(jù)圖中信息,下列結(jié)論中正確的是  

A. 2013年以來,每年參觀總?cè)舜沃鹉赀f增

B. 2014年比2013年增加的參觀人次不超過50

C. 2012年到2017年這六年間,2017年參觀總?cè)舜巫疃?/span>

D. 2012年到2017年這六年間,平均每年參觀總?cè)舜纬^160

查看答案和解析>>

同步練習(xí)冊(cè)答案