求數(shù)列2x2,3x3,4x4,…,nxn,…的前n項和.

答案:
解析:

解:(1)當(dāng)x=0時,Sn=0.

(2)當(dāng)x=1時,Sn=2+3+4+…+(n+1)= n(n+3).

(3)當(dāng)x≠1時,Sn=2x2+3x3+4x4+…+(n+1)xn+1                                                                                                   ①

xSn=2x3+3x4+4x5+…+nxn+1+(n+1)xn+2                                                                                                                           ②

①-②得:(1-xSn=2x2+x3+x4+…xn+1-(n+1)xn+2=

2x2+-(n+1)xn+2

Sn=                                                                                                         ③

又當(dāng)x=1時,Sn=0適合③

Sn=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率為kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1),點列An(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中x1=
11
7

(1)求xn與xn+1的關(guān)系式;
(2)求證:{
1
xn-2
+
1
3
}是等比數(shù)列;
(3)求證:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1).
(1)求xn與xn+1之間的關(guān)系式;
(2)若x1=
11
7
,求證:數(shù)列
1
xn-2
+
1
3
是等比數(shù)列;
(3)求證:(-1)x1+(-1)2x2+(-1)3x3+…(-1)nxn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省月考題 題型:解答題

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率為的直線交曲線C于另一點An+1(xn+1,yn+1),點列An(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中
(1)求xn與xn+1的關(guān)系式;
(2)求證:{}是等比數(shù)列;
(3)求證:(﹣1)+(﹣1)2x2+(﹣1)3x3+…+(﹣1)nxn<1(n∈N,n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕頭市濠江區(qū)金山中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率為的直線交曲線C于另一點An+1(xn+1,yn+1),點列An(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中
(1)求xn與xn+1的關(guān)系式;
(2)求證:{}是等比數(shù)列;
(3)求證:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).

查看答案和解析>>

同步練習(xí)冊答案