如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓于、兩點,交橢圓于另一點.
(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線的方程.
(1);當直線的方程為時,的面積取最大值.
解析試題分析:(1)首先根據(jù)題中條件求出和的值,進而求出橢圓的方程;(2)先設(shè)直線的方程為,先利用弦心距、半徑長以及弦長之間滿足的關(guān)系(勾股定理)求出直線截圓所得的弦長
,然后根據(jù)直線與兩者所滿足的垂直關(guān)系設(shè)直線,將直線的方程與橢圓的方程聯(lián)立,求出直線截橢圓的弦長,然后求出的面積的表達式,并利用基本不等式求出的面積的最大值,并求出此時直線的方程.
試題解析:(1)由題意得,
橢圓的方程為;
(2)設(shè)、、,
由題意知直線的斜率存在,不妨設(shè)其為,則直線的方程為,
故點到直線的距離為,又圓,
,
又,直線的方程為,
由,消去,整理得,
故,代入的方程得
,
設(shè)的面積為,則
,
,
當且僅當,即時上式取等號,
當時,的面積取得最大值,
此時直線的方程為
考點:1.橢圓的方程;2.直線與圓、橢圓的位置關(guān)系;3.基本不等式
科目:高中數(shù)學 來源: 題型:解答題
閱讀:
已知、,,求的最小值.
解法如下:,
當且僅當,即時取到等號,
則的最小值為.
應(yīng)用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的定義域為. 設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求證:是定值;
(2)判斷并說明有最大值還是最小值,并求出此最大值或最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知正方形ABCD,其中頂點A、C坐標分別是 (2,0)、(2,4),點P(x,y)在正方形內(nèi)部(包括邊界)上運動,則的最大值是
A.10 B.8 C.12 D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com