11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,則sinβ的值為$\frac{63}{65}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sinα的值,由角的范圍結(jié)合cos(β-α)=$\frac{5}{13}$>0,可得范圍:-$\frac{π}{2}$<β-α<0,利用同角三角函數(shù)基本關(guān)系式可求sin(β-α),由角關(guān)系β=(β-α)+α,利用兩角和的正弦函數(shù)公式即可計算求值.

解答 解:∵$\frac{π}{2}$<α<π,tanα=-$\frac{3}{4}$,
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\frac{4}{5}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,
∵0<β<$\frac{π}{2}$,可得:-π<β-α<0,
又∵cos(β-α)=$\frac{5}{13}$>0,可得:-$\frac{π}{2}$<β-α<0,
∴sin(β-α)=-$\sqrt{1-co{s}^{2}(β-α)}$=-$\frac{12}{13}$,
∴sinβ=sin[(β-α)+α]=sin(β-α)cosα+cos(β-α)sinα=(-$\frac{12}{13}$)×(-$\frac{4}{5}$)+$\frac{5}{13}$×$\frac{3}{5}$=$\frac{63}{65}$.
故答案為:$\frac{63}{65}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想和計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,又$\overrightarrow{OC}=2\overrightarrow{a}+\overrightarrow$,$\overrightarrow{OD}=\overrightarrow{a}+3\overrightarrow$.求|$\overrightarrow{CD}$|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$(e是對自然對數(shù)的底數(shù)),則其導函數(shù)f'(x)=(  )
A.$\frac{1+x}{{e}^{x}}$B.$\frac{1-x}{{e}^{x}}$C.1+xD.1-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)$.
( I)求函數(shù)f(x)對稱軸方程和單調(diào)遞增區(qū)間;
( II)對任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值.
(1)確定a的值和f(x)的極值;
(2)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,矩形AnBnCnDn的一邊AnBn在x軸上,另外兩個頂點Cn,Dn在函數(shù)f(x)=x+$\frac{1}{2x}({x>0})$的圖象上.若點Bn的坐標為(n,0)(n∈N*),記矩形AnBnCnDn的周長為an,則a1+a2+…+a10( 。
A.208B.212C.216D.220

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有$f[{f(x)+{{log}_{\frac{1}{3}}}x}]=4$,且方程|f(x)-3|=x3-6x2+9x-4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是(  )
A.0<a≤5B.a<5C.0<a<5D.a≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$f(x)=\left\{\begin{array}{l}x+1,({0≤x<1})\\{2^x}-\frac{1}{2},({x≥1})\end{array}\right.$,設a>b≥0,若f(a)=f(b),則b•f(a)的取值范圍是(  )
A.(1,2]B.$({\frac{3}{4},2}]$C.$[{\frac{3}{4},2})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=$\frac{lnx}{x}$,若f′(x0)=0,則x0=( 。
A.e2B.eC.1D.ln2

查看答案和解析>>

同步練習冊答案