【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生的選考方案待確定.例如,學(xué)生甲選擇物理、化學(xué)和生物三個(gè)選考科目,則學(xué)生甲的選考方案確定,物理、化學(xué)和生物為其選考方案.

某學(xué)校為了解高年級(jí)名學(xué)生選考科目的意向,隨機(jī)選取名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有

選考方案待確定的有

女生

選考方案確定的有

選考方案待確定的有

1)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

2)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的名學(xué)生中隨機(jī)選出名,試求在選取的名學(xué)生中恰有名男生的條件下兩名學(xué)生的選考方案中都含有歷史學(xué)科的概率;

3)從選考方案確定的名男生中隨機(jī)選出名,設(shè)隨機(jī)變量表示所選人中選考方案完全相同的人數(shù)(若有人選考方案完全相同,則),求的分布列及數(shù)學(xué)期望.

【答案】1140人(23)見解析

【解析】

根據(jù)抽取的樣本數(shù)、用總?cè)藬?shù)乘以樣本中確定選考方案的概率,再乘以確定選考方案中選擇生物的比例即可;

利用條件概率公式,先求出選考方案確定的名學(xué)生中隨機(jī)選出名恰有名男生的概率,再分別求出男生、女生選考方案中含有歷史學(xué)科的概率,代入條件概率公式求解即可;

由已知得的取值為,利用排列組合分別求出對(duì)應(yīng)的概率,列出分布列,代入數(shù)學(xué)期望公式求解即可.

由題可知,選考方案確定的男生中確定選考生物的學(xué)生有人,

選考方案確定的女生中確定選考生物的學(xué)生有人,

該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有.

由數(shù)據(jù)可知,從選考方案確定的名學(xué)生中隨機(jī)選出人,

選取的名學(xué)生中恰有名男生的概率為

男生選考方案中含有歷史學(xué)科的概率為.

女生選考方案中含有歷史學(xué)科的概率為,

所以在選取的名學(xué)生中恰有名男生的條件下兩名學(xué)生的選考方案中都含有歷史學(xué)科的概率為.

由數(shù)據(jù)可知,選考方案確定的男生中有人選擇物理、化學(xué)和生物;

人選擇物理、化學(xué)和歷史;

人選擇物理、化學(xué)和地理;有人選擇物理.化學(xué)和政治.

由已知得的取值為.

所以的分布列為

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知,的公共點(diǎn)分別為,,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.

1)求橢圓E的標(biāo)準(zhǔn)方程,

2)若,四邊形ABCD內(nèi)接于橢圓E,,記直線ADBC的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l與曲線C交于不同的兩點(diǎn)A,B.

1)求曲線C的參數(shù)方程;

2)若點(diǎn)P為直線與x軸的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象在處取得極值4.

1)求函數(shù)的單調(diào)區(qū)間;

2)對(duì)于函數(shù),若存在兩個(gè)不等正數(shù),,當(dāng)時(shí),函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布

1)隨機(jī)購(gòu)買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于克該海產(chǎn)品的概率.

22020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元)()的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,,,, ,其中 =.根據(jù)所給的統(tǒng)計(jì)量,求關(guān)于的回歸方程,并預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.

附:若隨機(jī)變量,則;

對(duì)于一組數(shù)據(jù),,,其回歸線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是(

A.命題,則的逆否命題為,則

B.命題,是假命題

C.若命題、均為假命題,則命題為真命題

D.是定義在R上的函數(shù),則是奇函數(shù)的必要不允分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案