【題目】已知函數(shù).

1)當(dāng)時(shí),求處的切線(xiàn)方程;

2)令,已知函數(shù)有兩個(gè)極值點(diǎn),且,求實(shí)數(shù)的取值范圍;

3)在(2)的條件下,若存在,使不等式對(duì)任意(取值范圍內(nèi)的值)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)(3)

【解析】

1)求出導(dǎo)數(shù),計(jì)算,由點(diǎn)斜式寫(xiě)出切線(xiàn)方程并整理成一般式;

2)求出,由,可得有兩個(gè)滿(mǎn)足題意的不等實(shí)根,由二次方程根的分布可得的范圍;

3)由(2)求出兩極值點(diǎn),確定的單調(diào)性,得單調(diào)遞增,因此題設(shè)中使不等式成立,取為最大值,使之成立即可;(jiǎn)為不等式對(duì)任意的恒成立,引入函數(shù),由導(dǎo)數(shù)研究此函數(shù)的單調(diào)性得不等式成立的條件.

解:當(dāng)時(shí),

時(shí),

處的切線(xiàn)方程為

化簡(jiǎn)得:

對(duì)函數(shù)求導(dǎo)可得,

,可得

,解得的取值范圍為

,解得

上遞增,在上遞減,在上遞增

單調(diào)遞增

上,

,使不等式對(duì)恒成立

等價(jià)于不等式恒成立

即不等式對(duì)任意的恒成立

,則

①當(dāng)時(shí),上遞減

不合題意

②當(dāng)時(shí),

,即時(shí),則上先遞減

時(shí),不能恒成立

,則上單調(diào)遞增

恒成立

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“類(lèi)函數(shù)”.

(1)已知函數(shù),試判斷是否為“類(lèi)函數(shù)”?并說(shuō)明理由;

(2)設(shè)是定義在上的“類(lèi)函數(shù)”,求是實(shí)數(shù)的最小值;

(3)若 為其定義域上的“類(lèi)函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線(xiàn)在原點(diǎn)出切線(xiàn)相同.

(1)求的單調(diào)區(qū)間和極值;

(2)若時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)字不重復(fù),且個(gè)位數(shù)字與千位數(shù)字之差的絕對(duì)值等于2的四位數(shù)的個(gè)數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物商場(chǎng)分別推出支付寶和微信掃碼支付購(gòu)物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來(lái)表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;

2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

支付方式

現(xiàn)金

會(huì)員卡

掃碼

比例

商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無(wú)優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購(gòu)買(mǎi)了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?

參考數(shù)據(jù):設(shè),,

參考公式:對(duì)于一組數(shù)據(jù),,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)直線(xiàn)上第一象限內(nèi)的一動(dòng)點(diǎn)作圓的兩條切線(xiàn),切點(diǎn)分別為,過(guò)兩點(diǎn)的直線(xiàn)與坐標(biāo)軸分別交于兩點(diǎn),則面積的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC如圖(1),∠C90°,D.E分別是AC,AB的中點(diǎn),將△ADE沿DE折起到PDE位置(即A點(diǎn)到P點(diǎn)位置)如圖(2)使∠PDC60°

1)求證:BCPC;

(2)若BC2CD4,求點(diǎn)D到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的展開(kāi)圖如圖二,其中四邊形為邊長(zhǎng)等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案