某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為數(shù)學公式
(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為數(shù)學公式,每個男生通過的概率均為數(shù)學公式.現(xiàn)對該小組中男生甲.男生乙和女生丙3個人進行測試,求這3人中恰有1人通過測試的概率.

解:(Ⅰ)設該小組中女生的人數(shù)為n,由題意可得=,解得n=6,或n=4(舍去).
即該小組中女生的人數(shù)為 6.
(Ⅱ)男生中有1人通過測試的概率為=
女生中有1人通過測試的概率為=
故這3人中恰有1人通過測試的概率為+=
分析:(Ⅰ)設該小組中女生的人數(shù)為n,由題意可得=,解得n的值.
(Ⅱ)男生中有1人通過測試的概率,加上女生中有1人通過測試的概率,即得所求.
點評:本題主要考查n次獨立重復實驗中恰好發(fā)生k次的概率,等可能事件的概率,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為
8
15

(1)求該小組中女生的人數(shù);
(2)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為
3
4
,每個男生通過的概率均為
2
3
;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州二模)某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為
8
15

(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為
3
4
,每個男生通過的概率均為
2
3
.現(xiàn)對該小組中男生甲.男生乙和女生丙3個人進行測試,求這3人中恰有1人通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試。在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為  (I)求該小組中女生的人數(shù);   (II)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為,每個男生通過的概率均為,現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量,求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;

(Ⅰ)求該小組中女生的人數(shù);

(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三12周考理科數(shù)學 題型:解答題

(本小題滿分12分)某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;(Ⅰ)求該小組中女生的人數(shù);(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為,每個男生通過的概率均為;現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數(shù)為隨機變量,求的分布列和數(shù)學期望.

 

 

 

 

查看答案和解析>>

同步練習冊答案