【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如下表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評價(jià)為課外體育達(dá)標(biāo)”.

平均每天鍛煉的時(shí)間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為課外體育達(dá)標(biāo)與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)從上述200名學(xué)生中,按課外體育達(dá)標(biāo)”、“課外體育不達(dá)標(biāo)分層抽樣,抽取4人得到一個(gè)樣本,再從這個(gè)樣本中抽取2人,求恰好抽到一名課外體育不達(dá)標(biāo)學(xué)生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)見解析;(2).

【解析】

根據(jù)題意,由頻率分布表可得列聯(lián)表,計(jì)算出與臨界值作比較即可得到結(jié)論

由題意,樣本中“課外體育不達(dá)標(biāo)”的學(xué)生有人,記為:,“課外體育達(dá)標(biāo)”的學(xué)生有人,記為,列舉從名學(xué)生中任意選出人以及恰好抽到一名“課外體育不達(dá)標(biāo)”的學(xué)生的情況,再由古典概型的計(jì)算公式計(jì)算即可求得答案

(1)由題意可得如下列聯(lián)表:

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

60

30

90

90

20

110

合計(jì)

150

50

200

由上表可得 .

所以在犯錯(cuò)誤的概率不超過0.01的前提下不能判斷課外體育達(dá)標(biāo)與性別有關(guān).

(2)由題意,樣本中課外體育不達(dá)標(biāo)的學(xué)生有3人,記為:;“課外體育達(dá)標(biāo)的學(xué)生有1人,記為:.

從這4人中抽取2人共有6種情況,其中恰好抽到一名課外體育不達(dá)標(biāo)學(xué)生3種情況,設(shè)恰好抽到一名課外體育不達(dá)標(biāo)學(xué)生為事件,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為Tn , 求滿足Tn (n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處有極大值,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項(xiàng)和為Tn , 證明Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當(dāng)?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個(gè)入口P(點(diǎn)P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點(diǎn)分別是B,P.當(dāng)新建的兩條公路總長最小時(shí),投資費(fèi)用最低.設(shè)∠POA=,公路MB,MN的總長為

(1)求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;

(2)當(dāng)為何值時(shí),投資費(fèi)用最低?并求出的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>1,函數(shù)f(x)=,g(x)=x+4, x1[1,3],x2[0,3],使得f(x1)=g(x2)成立,則a的取值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域?yàn)閇1,2];
②如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值為2,那么t的最大值為4;
③函數(shù)f(x)在[0,2]上是減函數(shù);
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a最多有4個(gè)零點(diǎn).
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查得到如下列聯(lián)表:平均每天喝500ml以上為常喝,體重超過50kg為肥胖。

常喝

不常喝

合計(jì)

肥胖

6

2

8

不肥胖

4

18

22

合計(jì)

10

20

30

已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為

(1)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由

(2)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?

參考數(shù)據(jù):

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案