【題目】已知集合.
(1)求證:函數(shù);
(2)某同學由(1)又發(fā)現(xiàn)是周期函數(shù)且是偶函數(shù),于是他得出兩個命題:①集合中的元素都是周期函數(shù);②集合中的元素都是偶函數(shù),請對這兩個命題給出判斷,如果正確,請證明;如果不正確,請舉出反例;
(3)設為非零常數(shù),求的充要條件,并給出證明.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的方程為.
(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程和直線的極坐標方程;
(2)在(1)的條件下,直線的極坐標方程為,設曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線與曲線滿足下列兩個條件:①直線在點處與曲線相切;②曲線在點附近位于直線的兩側,則稱直線在點處“切過”曲線.則下列結論正確的是( )
A.直線在點處“切過”曲線
B.直線在點處“切過”曲線
C.直線在點處“切過”曲線
D.直線在點處“切過”曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為,點在橢圓上.
(1)設點到直線的距離為,證明:為定值;
(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結果用表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,其焦點到準線的距離為2,直線與拋物線交于,兩點,過,分別作拋物線的切線,,與交于點.
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓,是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當點P在圓M上運動時,點Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)已知拋物線上,是否存在直線m與曲線E交于G,H,使得G,H中點F落在直線y=2x上,并且與拋物線相切,若直線m存在,求出直線m的方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com