6人站成一橫排,其中甲不站左端也不站右端,有多少種不同站法( )
A.380
B.480
C.580
D.680
【答案】分析:本題是一個排列組合簡單的計數(shù)問題,根據(jù)甲不站左端也不站右端,得到甲有4種站法,安排好甲以后余下的五個位置有五個元素進(jìn)行全排列.
解答:解:由題意知本題是一個排列組合簡單的計數(shù)問題,
∵甲不站左端也不站右端,
∴甲有4種站法,
安排好甲以后余下的五個位置有五個元素進(jìn)行全排列,共有A55=120種結(jié)果,
∴符合條件的站法共有4×120=480,
故選B.
點評:本題看出排列組合及簡單的計數(shù)問題,本題解題的關(guān)鍵是線排列具有限制條件的甲,子啊排列沒有限制條件的元素,本題是一個基礎(chǔ)題.