【題目】已知函數(shù)定義在上的奇函數(shù), 的最大值為.
(1)求函數(shù)的解析式;
(2)關(guān)于的方程在上有解,求實數(shù)的取值范圍;
(3)若存在,不等式成立,請同學(xué)們探究實數(shù)的所有可能取值.
【答案】(1);(2);(3).
【解析】試題分析:(1)根據(jù),利用的最大值為,可得,再根據(jù)即可確定的解析式;(2) 關(guān)于的方程在上有解,即在上有解,根據(jù)函數(shù)單調(diào)性的求出的值域,即可得結(jié)果;(3)利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系,可得不等式成立等價于成立,即存在使得成立,求出的最小值即可得結(jié)果.
試題解析:(1)定義在上的奇函數(shù),所以,又易得,從而, ,所以, . 故.
(2)關(guān)于的方程在上有解,即在上有解
令: ,則在上單調(diào)性遞增函數(shù),
所以在上的值域為,
從而,實數(shù)的取值范圍.
(3)因為是奇函數(shù)且在為單調(diào)遞增函數(shù),
所以由有,
即:存在使得成立,分別由以及在上的圖像可知, 在上是增函數(shù),所以,所以
又即,所以,綜上: .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關(guān)還是負(fù)相關(guān)?
(2)請根據(jù)上表提供的數(shù)據(jù),求回歸直線方程;
(3)據(jù)此估計廣告費用為10時,銷售收入的值.
(參考公式:,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又是的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)時,車流速度是車流密度x的一次函數(shù).
①當(dāng)時,求函數(shù)的表達(dá)式.
②當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)的圖象在點處的切線平行于直線,求的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的反函數(shù)為, .
(1)求的解析式,并指出的定義域;
(2)判斷的奇偶性,并說明理由;
(3)設(shè),解關(guān)于的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在x = 2處的切線與直線垂直.
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)若存在,使成立,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com