分析 由B2F⊥AB1,可得$\overrightarrow{F{B}_{2}}$•$\overrightarrow{{B}_{1}A}$=0,即可得出.
解答 解:F(c,0),A(a,0),B1(0,-b),B2(0,b),
∴$\overrightarrow{F{B}_{2}}$=(-c,b),$\overrightarrow{{B}_{1}A}$=(a,b),
∵B2F⊥AB1,∴$\overrightarrow{F{B}_{2}}$•$\overrightarrow{{B}_{1}A}$=-ac+b2=0,
∴a2-c2-ac=0,
化為:e2+e-1=0,0<e<1.
解得e=$\frac{\sqrt{5}-1}{2}$,
故答案為:$\frac{{\sqrt{5}-1}}{2}$.
點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2017 | B. | -8 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,2) | C. | (3,+∞) | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com