若直線與直線關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),則直線恒過(guò)定點(diǎn)              (    )

       A.(0,4)           B.()        C.(0, 2)           D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高一下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(14分)已知圓過(guò)點(diǎn)且與圓M:關(guān)于直線對(duì)稱(chēng)

  (1)判斷圓與圓M的位置關(guān)系,并說(shuō)明理由;

  (2)過(guò)點(diǎn)作兩條相異直線分別與圓相交于、

   ①若直線與直線互相垂直,求的最大值;

   ②若直線與直線軸分別交于,且,為坐標(biāo)原點(diǎn),試判斷直線是否平行?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年海淀區(qū)二模理)若直線與直線關(guān)于點(diǎn)對(duì)稱(chēng),則直線恒過(guò)定點(diǎn)         (     )

(A)        (B)        (C)           (D) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線與直線關(guān)于點(diǎn)對(duì)稱(chēng),則直線恒過(guò)定點(diǎn)(   )

A.(0,4)            B.(0,2)            C.(-2,4)   D.(4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點(diǎn)在同一條直線上,直線平行,且只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點(diǎn)為E,圓F的半徑為,

則|FE|=,=,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點(diǎn)在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

設(shè)直線的方程為:,代入得,,

只有一個(gè)公共點(diǎn), ∴=,∴,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

∴坐標(biāo)原點(diǎn)到距離的比值為3.

解析2由對(duì)稱(chēng)性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)得:

     得:,直線

     切點(diǎn)

     直線

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>

同步練習(xí)冊(cè)答案