已知圓M:x2+y2+2mx-3=0(m<0)的半徑為2,橢圓的左焦點為F(-c,0),若垂直于x軸且經(jīng)過F點的直線l與圓M相切,則a的值為( )
A.
B.1
C.2
D.4
【答案】分析:先確定圓的圓心坐標,再利用垂直于x軸且經(jīng)過F點的直線l與圓M相切,可求c的值,進而可求a的值.
解答:解:∵圓M:x2+y2+2mx-3=0(m<0)的半徑為2
∴m2+3=4
∴m2=1
∵m<0
∴m=-1
∴圓心M的坐標為(1,0)
∵垂直于x軸且經(jīng)過F點的直線l與圓M相切
∴c=1
∴a2=1+3=4
∴a=2
故選C.
點評:本題考查圓的標準方程,考查直線與圓相切,考查橢圓的標準方程,確定圓的圓心坐標是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+y2-4x-8y+m=0與x軸相切.
(1)求m的值;
(2)求圓M在y軸上截得的弦長;
(3)若點P是直線3x+4y+8=0上的動點,過點P作直線PA、PB與圓M相切,A、B為切點.求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+y2=4,在圓M上隨機取一點P,則P到直線x+y=2的距離大于2
2
的概率為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•豐臺區(qū)一模)已知圓M:x2+y2+6x-4
3
y+17=0
,過點A(-1,0)作△ABC,使其滿足條件:直線AB經(jīng)過圓心M,∠BAC=30°,且B、C兩點均在圓M上,則直線AC的方程為
x=-1或x+
3
y+1=0
x=-1或x+
3
y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武漢模擬)已知圓M:x2+y2-8x-6y=0,過圓M內(nèi)定點P(1,2)作兩條相互垂直的弦AC和BD,則四邊形ABCD面積的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+y2-4x=0及一條拋物線,拋物線的頂點在原點,焦點是M的圓心F,過F作傾角為α的直線l與拋物線及圓由上至下依次交于A、B、C、D四點,則|AB|+|CD|的最小值為
 

查看答案和解析>>

同步練習冊答案