解不等式:3 x2-8<32x
考點:指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:利用指數(shù)函數(shù)的單調(diào)性,解相應(yīng)的不等式即可.
解答: 解:∵3 x2-8<32x,y=3x為R上的增函數(shù),
∴x2-8<2x,
∴(x-4)(x+2)<0,
解得:-2<x<4,
∴原不等式的解集為{x|-2<x<4}.
點評:本題考查指數(shù)不等式的解法,考查指數(shù)函數(shù)的單調(diào)性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x2,x∈[-1,2]
x-3,x∈[2,5]
,則f(f(1))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,a2=2,an+2=[1+
1+(-1)n
2
]an+2[1+(-1)n+1],n=1,2,3….
(1)求a3,a4,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過兩條直線2x+y-8=0和x-2y+=0的交點.
(1)若直線l垂直于直線4x-3y-7=0,求直線l的方程;
(2)若直線l與兩坐標軸圍成的三角形的面積為
1
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l在x軸上的截距為1,且垂直于直線y=
1
2
x,則l的方程是( 。
A、y=-2x+2
B、y=-2x+1
C、y=2x+2
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2-mx+n<0(m,n∈R)的解集為(2,3),則m-n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x>0,則x2>0”的否命題是(  )
A、若x>0,則x2≤0
B、若x2>0,則x>0
C、若x≤0,則x2≤0
D、若x2≤0,則x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把復(fù)數(shù)a-bi叫做復(fù)數(shù)z=a+bi(a,b∈R)的共軛復(fù)數(shù),記作
.
z
,若i是虛數(shù)單位,z=1+i,
z
為復(fù)數(shù)z的共軛復(fù)數(shù),則z•
z
+|
z
|-1=( 。
A、
2
+1
B、
2
+3
C、2
2
-1
D、2
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α與β的終邊關(guān)于x軸對稱,則α+β的終邊落在
 

查看答案和解析>>

同步練習(xí)冊答案