已知數(shù)列+n-4n,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(Ⅰ)證明:當λ≠-18時,數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.
【答案】分析:(Ⅰ)假設(shè)存在一個實數(shù)?,使{an}是等比數(shù)列,由題意知(2=2,矛盾.所以{an}不是等比數(shù)列.
(Ⅱ)由題設(shè)條件知b1=-(λ+18)≠0.,故當λ≠-18,時,數(shù)列{bn}是以-(λ+18)為首項,為公比的等比數(shù)列.
(Ⅲ)由題設(shè)條件得,,由此入手能夠推出存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12;λ的取值范圍為(-∞,-6).
解答:解:(Ⅰ)證明:假設(shè)存在一個實數(shù)?,使{an}是等比數(shù)列,則有a22=a1a2,即
2=2,矛盾.
所以{an}不是等比數(shù)列.
(Ⅱ)證明:∵
=
λ≠-18,∴b1=-(λ+18)≠0.
由上式知,
故當λ≠-18,時,數(shù)列{bn}是以-(λ+18)為首項,為公比的等比數(shù)列.
(Ⅲ)當λ≠-18時,由(Ⅱ)得,
于是,
當λ=-18時,bn=0,從而Sn=0.上式仍成立.
要使對任意正整數(shù)n,都有Sn>-12.


當n為正奇數(shù)時,當n為正偶數(shù)時,,∴
于是可得
綜上所述,存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12;λ的取值范圍為(-∞,-6).
點評:本題考查數(shù)列的綜合應(yīng)用,解題時要注意公式的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、已知數(shù)列{an}的前n項和為Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),則S15+S22-S31的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列數(shù)學公式+n-4n,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(Ⅰ)證明:當λ≠-18時,數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年湖北省高考數(shù)學試卷(文科)(解析版) 題型:解答題

已知數(shù)列+n-4n,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(Ⅰ)證明:當λ≠-18時,數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案