5.方程lnx=-x+3的根所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 令f(x)=lnx+x-3,從而利用函數(shù)的零點的判定定理判斷即可.

解答 解:令f(x)=lnx+x-3,
易知f(x)在其定義域上連續(xù),
f(2)=ln2+2-3=ln2-1<0,
f(3)=ln3+3-3=ln3>0,
故f(x)=lnx+x-3在(2,3)上有零點,
故方程lnx+x=3的根所在的區(qū)間是(2,3);
故選:C.

點評 本題考查了方程的根與函數(shù)的零點的關系應用.考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.(理科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4
(1)證明數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項公式;
(3)設數(shù)列{an•bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.m為何實數(shù)時,復數(shù)z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)實數(shù);
(2)虛數(shù);
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(Ⅰ)求證:B1N⊥CN;
(Ⅱ)設M為AB中點,在棱BC上是否存在一點P,使MP∥平面B1CN?若存在,求$\frac{BP}{PC}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設方程4x=|lg(-x)|的兩個根為x1,x2,則(  )
A.x1x2<0B.x1x2=1C.x1x2>0D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知某幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}為等差數(shù)列,Sn是它的前n項和,若a1=2,S4=20,則S6=( 。
A.32B.36C.40D.42

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.不等式的解集$|{1+x+\frac{x^2}{2}}|<1$是( 。
A.{x|-1<x<0}B.$\left\{{\left.x\right|-\frac{3}{2}<x<0}\right\}$C.$\left\{{\left.x\right|-\frac{5}{4}<x<0}\right\}$D.{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-$\frac{4x-1}{x+1}$.
(1)若函數(shù)f(x)在(1,2)上單調(diào)遞減,試求正數(shù)a的取值范圍;
(2)設h(x)=x2-2bx+4,a=-2,若對于任意x1∈[1,2],存在x2∈[5,10],使得f(x1)≥h(x2)成立,試確定b的取值范圍.

查看答案和解析>>

同步練習冊答案