已知:如圖,MN為圓的直徑,P、C為圓上兩點(diǎn),連PM、PN,過C作MN的垂線與MN、MP和NP的延長線依次相交于A、B、D,求證:AC2=AB•AD.

【答案】分析:首先用兩個角對應(yīng)相等證明兩個三角形相似,在相似三角形中寫出對應(yīng)邊成比例,又根據(jù)直角三角形的射影定理,得到比例式,結(jié)合兩個比例式,得到要證明的結(jié)論.
解答:證明:在△ABM與△AND中,
∠BAM=∠NAD=90°
∠AMB=∠ADN=90-∠MND,
∴△ABM∽△AND,
AB:AN=AM:AD,
AN•AM=AB•AD①
又∵在直角△MCN中,AC⊥MN,
∴AC2=AM•AN②
由①,②得AC2=AB•AD.
點(diǎn)評:本題考查相似三角形的證明和性質(zhì),考查直角三角形的射影定理,是一個證明對應(yīng)線段成比例的問題,是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知:如圖,MN為圓的直徑,P、C為圓上兩點(diǎn),連PM、PN,過C作MN的垂線與MN、MP和NP的延長線依次相交于A、B、D,求證:AC2=AB•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓A過定點(diǎn)B(0,2),圓心A在拋物線C:x2=4y上運(yùn)動,MN為圓A在x軸上所截得的弦.
(Ⅰ)證明:|MN|是定值;
(Ⅱ)討論拋物線C的準(zhǔn)線l與圓A的位置關(guān)系;
(Ⅲ)設(shè)D是拋物線C的準(zhǔn)線l上任意一點(diǎn),過D向拋物線作兩條切線DS,DT(切點(diǎn)是S,T),判斷直線ST是否過定點(diǎn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,圓C的圓心在拋物線x2=2py(p>0)上運(yùn)動,且圓C過A(0,p)點(diǎn),若MN為圓C在x軸上截得的弦.
設(shè)AM=l1,AN=l2,求
l1
l2
+
l2
l1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,MN為圓的直徑,P、C為圓上兩點(diǎn),連PM、PN,過C作MN的垂線與MN、MP和NP的延長線依次相交于A、B、D,求證:AC2=AB•AD.

查看答案和解析>>

同步練習(xí)冊答案