已知數(shù)列計(jì)算由此推測(cè)出的計(jì)算公式,并用數(shù)學(xué)歸納法證明.
,推測(cè),證明過(guò)程詳見(jiàn)解析.
解析試題分析:計(jì)算的值可以推出,利用數(shù)學(xué)歸納法可以證明,首先驗(yàn)證n=1時(shí),結(jié)論成立,接下來(lái)假設(shè)n=k()時(shí)結(jié)論成立,即有,最后只需證明n=k+1時(shí),結(jié)論也成立,利用即可得證.
,
∴推測(cè)
①n=1時(shí),左邊=,右邊= ,左邊=右邊,所以等式成立 6分
②假設(shè)n=k時(shí)等式成立,即有,
則當(dāng)n=k+1時(shí),
所以當(dāng)n=k+1時(shí),等式也成立 13分
由①,②可知,對(duì)一切等式都成立 14分.
考點(diǎn):數(shù)學(xué)歸納法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
記的展開(kāi)式中,的系數(shù)為,的系數(shù)為,其中
(1)求(2)是否存在常數(shù)p,q(p<q),使,對(duì),恒成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{}滿足:a1=2,對(duì)一切正整數(shù)n,都有
(1)探討數(shù)列{}是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意都有:;
(1)求;
(2)猜想的表達(dá)式并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com