設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).

(1)試判斷函數(shù)f1(x)=x2,中哪些是各自定義域上的C函數(shù),并說明理由;

(2)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)anf(n),n=0,1,2…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;

(3)若f(x)是定義域為R的函數(shù),且最小正周期為T,試證明f(x)不是R上的C函數(shù).

答案:
解析:

  解:(1)是C函數(shù),證明如下:

  對任意實數(shù),

  有

  即

  ∴是C函數(shù).不是C函數(shù),證明如下:

  取,,

  則

  即.∴不是C函數(shù).  4分

  (2)對任意,取,R上的C函數(shù),,且

  ∴

  那么

  可證是C函數(shù),且使得都成立,此時

  綜上所述,的最大值為.  9分

  (3)假設(shè)R上的C函數(shù).

  若存在,使得

  若,

  記,,則,且

  那么

  這與矛盾.

  若,記也可得到矛盾.

  ∴上是常數(shù)函數(shù),

  又因為是周期為T的函數(shù),所以R上是常數(shù)函數(shù),這與的最小正周期為T矛盾.

  所以不是R上的C函數(shù).  14分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:北京市海淀區(qū)2008-2009學年度高三年級第一學期期中練習數(shù)學文科 題型:044

設(shè)f(x)是定義在D上的函數(shù),若對D中的任意兩數(shù)x1,x2(x1≠x2),恒有,則稱f(x)為定義在D上的C函數(shù).

(1)試判斷函數(shù)f(x)=x2是否為定義域上的C函數(shù),并說明理由;

(2)若函數(shù)f(x)是R上的奇函數(shù),試證明f(x)不是R上的C函數(shù);

(3)設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)a∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(ax1+(1-a)x2]≤af(x1)+(1-a)f(x2),則稱f(x)為定義在D上的C函數(shù).已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n,0,1,2,…,m,且a0=0,am=2m,記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(1+x)=f(1-x),下列說法①f(x+2)=f(x);②f(x+4)=-f(x);③f(1)+f(2)+f(3)+f(4)=0;④f(x+4)=f(x).正確的是(    )

A.①②③                B.①③                   C.③④               D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R都有f(2-x)=f(x)成立.當x∈[0,2]時,f(x)=1-|x-1|,則方程f(x)=lgx的根有(    )

A.5個            B.1個              C.9個              D.7個

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三上學期期末考試文科數(shù)學 題型:選擇題

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當x>0時,有恒成立,則不等式 的解集是

A.(-2,0) ∪(2,+∞)   B.(-2,0) ∪(0,2)  C.(-∞,-2)∪(2,+∞)    D.(-∞,-2)∪(0,2)

 

查看答案和解析>>

同步練習冊答案