分析 求出m的值,根據(jù)復合函數(shù)同增異減的原則,求出函數(shù)g(x)的遞增區(qū)間即可.
解答 解:∵${∫}_{0}^{1}$(x+m)dx=1,
∴($\frac{1}{2}$x2+mx)${|}_{0}^{1}$=1,解得:m=$\frac{1}{2}$,
故f(x)=$lo{g}_{\frac{1}{2}}$(3+2x-x2),
令g(x)=-x2+2x+3=-(x-3)(x+1),
令g(x)>0,解得:-1<x<3,
而g(x)在對稱軸x=1,
故g(x)在(-1,1)遞增,
故f(x)在(-1,1)遞減.
故答案為(-1,1).
點評 本題考查了定積分的運算,考查復合函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì),對數(shù)函數(shù)的性質(zhì),是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{39}}{26}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 91 | B. | 89 | C. | 55 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ③④ | B. | ①③ | C. | ①② | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com