精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
2x+1
x
(x>0),數列{an}滿足a1=1,an=f(
1
an-1
)
,(n∈N*,且n≥2).
(1)求數列{an}的通項公式;
(2)設T2n=-4(a2+a4+a6+…+a2n),若T2n>4tn2對n∈N*恒成立,求實數t的取值范圍.
考點:等差數列的性質,數列遞推式
專題:等差數列與等比數列
分析:(1)由已知得an=f(
1
an-1
)=2+
1
1
an-1
=an-1+2
,(n≥2),從而an-an-1=2,由此能求出an=2n-1.
(2)由已知得T2n=-4×
a2+a2n
2
×n=-2n(3+4n-1)=-8n2-4n
,從而t<
-8n2-4n
4n2
=-2-
1
n
,由此利用y=-2-
1
n
在n∈N*單調遞增,能求出實數t的取值范圍.
解答: 解:(1)∵f(x)=
2x+1
x
(x>0),
an=f(
1
an-1
)=2+
1
1
an-1
=an-1+2
,(n≥2)
∴an-an-1=2,…(2分)
又∵a1=1,∴數列{an}是以1為首項,公差為2的等差數列.
∴an=2n-1.(n∈N*)…(4分)
(2)解:T2n=-4(a2+a4+a6+…+a2n
=-4×
a2+a2n
2
×n=-2n(3+4n-1)=-8n2-4n
,…(8分)
T2n>4tn2恒成立,∴t<
-8n2-4n
4n2
=-2-
1
n
,
y=-2-
1
n
在n∈N*單調遞增,
-2-
1
n
≥-3
,即t<-3.…(12分)
點評:本題考查數列的通項公式的求法,考查滿足條件的實數的取值范圍的求法,解題時要認真審題,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB-bsinB=c,且cosA=-
1
3

(Ⅰ)求sinB;
(Ⅱ)若c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={-2,0,1},B={0,1,2},則A∪B等于( 。
A、{0,1}
B、{-2,0,1}
C、{-2,0,1,2}
D、{-2,2}

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項和為Sn,a1=1,且Sn=n(Sn+1+an+1)(n∈N+).
(1)求Sn;
(2)若存在n≥2,使Sn-1λSn,Sn+1成等差數列,求正整數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)對任意x∈R都有f(x)=f(x+4),當x∈(-2,0)時,f(x)=2x,則f(4)-f(3)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一個半徑為1的球體經過切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、16π
B、14π
C、4π
D、
8
3
π

查看答案和解析>>

科目:高中數學 來源: 題型:

解方程:q6-9q3+8=0.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O是△ABC所在平面上的一點,若
PO
=
a
PA
+b
PB
+c
PC
a+b+c
(其中P是ABC所在平面內任意一點),則O點是△ABC的( 。
A、外心B、內心C、重心D、垂心

查看答案和解析>>

科目:高中數學 來源: 題型:

下列函數中,在定義域內既是奇函數又是減函數的是(  )
A、f(x)=log0.5x
B、f(x)=x3
C、f(x)=x-1
D、f(x)=-x3

查看答案和解析>>

同步練習冊答案