已知FΘ,F(xiàn)Ρ是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),A,B分別是此橢圓的右頂點(diǎn)和上頂點(diǎn),P是橢圓上一點(diǎn),OP∥AB,PFΘ⊥x軸,|FΘA|=
10
+
5
,則此橢圓的方程是
x2
10
+
y2
5
=1
x2
10
+
y2
5
=1
分析:先把x=c代入橢圓方程求得y,進(jìn)而求得|PF|,根據(jù)OP∥AB,PF∥OB推斷出△PFO∽△ABO,進(jìn)而根據(jù)相似三角形的性質(zhì)求得
|PF|
|OF|
=
|OB|
|OA|
,求得b和c的關(guān)系,進(jìn)而根據(jù)|FA|=
10
+
5
,則橢圓的方程可得.
解答:解:把x=c代入橢圓方程求得y=±
b2
a
,
∴|PF|=
b2
a
,
∵OP∥AB,PF∥OB
∴△PFO∽△ABO
|PF|
|OF|
=
|OB|
|OA|
,即
b2
a
c
=
b
a
,求得b=c,
∴a=
2
c
∵|FA|=
10
+
5
,∴a+c=
10
+
5
,
∴a=
10
,b=c=
5


則此橢圓的方程是
x2
10
+
y2
5
=1

故答案為:
x2
10
+
y2
5
=1
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合分析問(wèn)題和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1經(jīng)過(guò)點(diǎn)P(數(shù)學(xué)公式,數(shù)學(xué)公式),離心率是數(shù)學(xué)公式,動(dòng)點(diǎn)M(2,t)(t>0)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F做OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON長(zhǎng)是定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 圓錐曲線》2013年單元測(cè)試卷B(解析版) 題型:解答題

已知定點(diǎn),F(xiàn)是橢圓的右焦點(diǎn),在橢圓上求一點(diǎn)M,使|AM|+2|MF|取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市江陰市成化中學(xué)高二(上)周練數(shù)學(xué)試卷(7)(解析版) 題型:解答題

已知橢圓+=1經(jīng)過(guò)點(diǎn)P(,),離心率是,動(dòng)點(diǎn)M(2,t)(t>0)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F做OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON長(zhǎng)是定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓+=1經(jīng)過(guò)點(diǎn)P(,),離心率是,動(dòng)點(diǎn)M(2,t)(t>0)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F做OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON長(zhǎng)是定值,并求出定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案