已知兩條平行直線4x+3y-4=0與8x+6y-3=0,則它們之間的距離為
 
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:首先使兩條平行直線x與y的系數(shù)相等,再根據(jù)平行線的距離公式求出距離即可.
解答: 解:由題意可得:兩條平行直線為8x+6y-8=0與8x+6y-3=0,
由平行線的距離公式可知d=
|-8+3|
82+62
=
1
2

故答案為:
1
2
點評:本題是基礎(chǔ)題,考查平行線的應(yīng)用,平行線的距離的求法,注意平行線的字母的系數(shù)必須相同是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A與B是互斥事件,其發(fā)生的概率分別為p1,p2,則A∪B發(fā)生的概率為( 。
A、p1+p2
B、p1•p2
C、1-p1•p2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條平行直線l1:y=m和l2:y=
3
m+1
(這里m>0),且直線l1與函數(shù)y=|log2x|的圖象從左至右相交于點A、B,直線l2與函數(shù)y=|log8x|的圖象從左至右相交于C、D.若記線段AC和BD在x軸上的投影長度分別為a、b,則當(dāng)m變化時,
b
a
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<0},B={x|
1
2
2x<4}
,則A∩B等于(  )
A、{x|-1<x<2}
B、{x|-1<x<0}
C、{x|x<1}
D、{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E1
x2
a2
+
y2
6
=1的焦點F1、F2在x軸上,且橢圓E1經(jīng)過P(m,-2)(m>0),過點P的直線l與E1交于點Q,與拋物線E2:y2=4x交于A、B兩點,當(dāng)直線l過F2時△PF1Q的周長為20
3

(Ⅰ)求m的值和E1的方程;
(Ⅱ)以線段AB為直徑的圓是否經(jīng)過E2上一定點,若經(jīng)過一定點求出定點坐標,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(sinα+cosα)=sin2α,則f(
1
5
)
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡圖,寫出函數(shù)f(x)的單調(diào)區(qū)間及最值;
(3)當(dāng)x的方程f(x)=m有四個不同的解時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U=R,集合A={x|-3≤x≤1},A∪B={x|-3≤x≤2},則B∩∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n表示兩條不同的直線,α、β表示兩個不同的平面,則下列命題中不正確的是( 。
A、m⊥α,m⊥β,則α∥β
B、m∥n,m⊥α,則n⊥α
C、m⊥α,n⊥α,則m∥n
D、m∥α,α∩β=n,則m∥n

查看答案和解析>>

同步練習(xí)冊答案