在函數(shù)y=x3-9x的圖象上,滿足在該點處的切線的傾斜角小于,且橫、縱坐標都為整數(shù)的點的個數(shù)是(  )
A.0B.1C.2D.3
A
依題意得,y′=3x2-9,令0≤y′<1得3≤x2<,顯然滿足該不等式的整數(shù)x不存在,因此在函數(shù)y=x3-9x的圖象上,滿足在該點處的切線的傾斜角小于,且橫、縱坐標都為整數(shù)的點的個數(shù)是0.故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,交曲線于點P,設(shè)P(t,f(t)).
 
(1)將△OMN(O為坐標原點)的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設(shè)函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線y=ax2-lnx在點(1,a)處的切線平行于x軸,則a=    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線f(x)=ln x在點(x0,f(x0))處的切線經(jīng)過點(0,-1),則x0的值為(  )
A.B.1
C.eD.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)yf(x)圖象在M(1,f(1))處的切線方程為yx+2,則f(1)+f′(1)
=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=xln x,則曲線yf(x)在x=1處的切線方程為(  )
A.xy-3=0B.xy+3=0C.xy-3=0D.xy+3=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若當=1,則f′(x0)等于(  ).
A.B.C.-D.-

查看答案和解析>>

同步練習冊答案