選修4-5不等式選講
設a≥b>0,求證:3a3+2b3≥3a2b+2ab2
分析:要證3a3+2b3≥3a2b+2ab2,即證3a3-3a2b+2b3-2ab2≥0,即(3a2-2b2)(a-b)≥0,結合a≥b>0,可得a-b≥0,3a2-2b2≥0,進而證得結論.
解答:證明:3a3+2b3-(3a2b+2ab2)=3a3-3a2b+2b3-2ab2=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a-b).
因為a≥b>0,所以a-b≥0,3a2-2b2≥0,
從而(3a2-2b2)(a-b)≥0,
即3a3+2b3≥3a2b+2ab2
點評:本題主要考查證明不等式的基本方法--作差法.本題屬容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-4坐標系與參數(shù)方程)將參數(shù)方程
x=e2+e-2
y=2(e2-e-2)
(e為參數(shù))化為普通方程是
 

B.(選修4-5 不等式選講)不等式|x-1|+|2x+3|>5的解集是
 

C.(選修4-1 幾何證明選講)如圖,在△ABC中,AD是高線,CE是中線,|DC|=|BE|,DG⊥CE于G,且|EC|=8,則|EG|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)(選修4-4坐標系與參數(shù)方程)
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,則極點到該直線的距離是
2
2
2
2

(2)(選修4-5 不等式選講)
已知lga+lgb=0,則滿足不等式
a
a2+1
+
b
b2+1
≤λ
的實數(shù)λ的范圍是
[1,+∞)
[1,+∞)

(3)(選修4-1 幾何證明選講)
如圖,兩個等圓⊙O與⊙O′外切,過O作⊙O′的兩條切線OA,OB,A,B是切點,點C在圓O′上且不與點A,B重合,則∠ACB=
60°
60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-5 不等式選講)
若任意實數(shù)x使m≥|x+2|-|5-x|恒成立,則實數(shù)m的取值范圍是
[7,+∞)
[7,+∞)
;
B.(選修4-1 幾何證明選講)
如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是
99°
99°
;
C.(選修4-4坐標系與參數(shù)方程)
極坐標系下,直線ρcos(θ-
π
4
)=
2
與圓ρ=
2
的公共點個數(shù)是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π
3
)=4
的距離的最小值是
5
2
5
2

(B)(選修4-5不等式選講)已知2x+y=1,x>0,y>0,則
x+2y
xy
的最小值是
9
9

(C)(選修4-1幾何證明選講)若直角△ABC的內切圓與斜邊AB相切于點D,且AD=1,BD=2,則△ABC的面積為
2
2

查看答案和解析>>

同步練習冊答案