分析 由(1+x-2x2)5=[1+x(1-2x)]5,利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,即可求出(1+x-2x2)5的展開(kāi)式中x4項(xiàng)的系數(shù).
解答 解:因?yàn)椋?+x-2x2)5=[1+x(1-2x)]5,
其展開(kāi)式的通項(xiàng)公式為:
Tr+1=${C}_{5}^{r}$•[x(1-2x)]r=${C}_{5}^{r}$•xr•[$\sum_{k=0}^{r}$${C}_{r}^{k}$•(-2x)k]=${C}_{5}^{r}$•[$\sum_{k=0}^{r}$${C}_{r}^{k}$•(-2)k•xk+r];
令k+r=4,且0≤r≤5,0≤k≤r,k、r∈N,
則$\left\{\begin{array}{l}{r=4}\\{k=0}\end{array}\right.$,或$\left\{\begin{array}{l}{r=3}\\{k=1}\end{array}\right.$,或$\left\{\begin{array}{l}{r=2}\\{k=2}\end{array}\right.$;
所以(1+x-2x2)5的展開(kāi)式中x4項(xiàng)的系數(shù)為:
${C}_{5}^{4}$•${C}_{4}^{0}$+${C}_{5}^{3}$•${C}_{3}^{1}$•(-2)+${C}_{5}^{2}$•${C}_{2}^{2}$•(-2)2=-15.
故答案為:-15.
點(diǎn)評(píng) 本題考查了二項(xiàng)式展開(kāi)式定理的應(yīng)用問(wèn)題,解題時(shí)應(yīng)用展開(kāi)式的通項(xiàng)公式求特定項(xiàng)的系數(shù),是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2-\sqrt{3}$ | B. | $-2-\sqrt{3}$ | C. | $-2+\sqrt{3}$ | D. | $2+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$ | B. | $\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$ | C. | $\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$ | D. | $\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com