分析 (1)根據(jù)雙曲線的漸近線設(shè)出雙曲線的漸近線系方程進行求解即可.
(2)根據(jù)條件設(shè)出雙曲線的方程,利用待定系數(shù)法進行求解即可.
解答 解:(1)∵雙曲線的漸近線方程為2x±3y=0,
∴可設(shè)雙曲線的方程為4x2-9y2=λ(λ≠0).
又∵雙曲線過點M(92,-1),
∴λ=4×814-9=72.
∴雙曲線方程為4x2-9y2=72,即x218-y28=1.
(2)解法1(設(shè)標(biāo)準(zhǔn)方程)
由橢圓方程可得焦點坐標(biāo)為(-5,0),(5,0),
即c=5且焦點在x軸上,
∴可設(shè)雙曲線的標(biāo)準(zhǔn)方程為x2a2−y22=1(a>0,b>0),且c=5.
又e=ca=54,∴a=4,∴b2=c2-a2=9.
∴雙曲線的標(biāo)準(zhǔn)方程為x216-y29=1.
解法2(設(shè)共焦點雙曲線系方程)
∵橢圓的焦點在x軸上,
∴可設(shè)雙曲線方程為\frac{x2}{49-λ}-\frac{y2}{λ-24}=1(24<λ<49).
又e=\frac{5}{4},∴\frac{λ-24}{49-λ}=\frac{25}{16}-1,解得λ=33.
∴雙曲線的標(biāo)準(zhǔn)方程為\frac{x2}{16}-\frac{y2}{9}=1.
點評 本題主要考查雙曲線的方程的求解,根據(jù)條件設(shè)出雙曲線的方程,利用待定系數(shù)法是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -\frac{6}{5} | B. | -1 | C. | 0 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [\frac{1}{{e}^{2}},\frac{1}{e}) | B. | [\frac{2}{3{e}^{2}},\frac{1}{2e}) | C. | [\frac{1}{{e}^{2}},\frac{2}{e}) | D. | [\frac{2}{3{e}^{2}},\frac{1}{e}) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com