A. | [1,2] | B. | [$\frac{1}{2}$,2] | C. | [$\frac{1}{2}$,1] | D. | (-∞,1) |
分析 分類討論,并分離參數,當x>0時,k≥$\frac{sinx}{x}$,而$\underset{lim}{x→0}$$\frac{sinx}{x}$=1,當x<0時,k≤-x-$\frac{1}{x}$,利用基本不等式即可求出
解答 解:當x=0時,f(0)=sin0=0,k取任何數都成立,
當x>0時,k≥$\frac{sinx}{x}$=1,
當x<0時,k≤-x-$\frac{1}{x}$
∵-x-$\frac{1}{x}$≥2$\sqrt{(-x)•\frac{1}{-x}}$=2,當且僅當x=-1時取等號,
∴k≤2,
綜上所述1≤k≤2,
故選:A
點評 本題考查了分段函數的應用以及基本不等式的應用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | C. | y2-x2=50 | D. | x2-y2=10 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,3] | B. | (-1,3) | C. | [-3,1) | D. | [-3,1] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com