△ABC中,D為邊BC上的一點(diǎn),BD=33,sinB=,cos∠ADC=,求AD.
【答案】分析:先由cos∠ADC=確定角ADC的范圍,因?yàn)椤螧AD=∠ADC-B所以可求其正弦值,最后由正弦定理可得答案.
解答:解:由cos∠ADC=>0,則∠ADC<,
又由知B<∠ADC可得B<
由sinB=,可得cosB=
又由cos∠ADC=,可得sin∠ADC=
從而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB==
由正弦定理得,
所以AD==
點(diǎn)評(píng):三角函數(shù)與解三角形的綜合性問題,是近幾年高考的熱點(diǎn),在高考試題中頻繁出現(xiàn).這類題型難度比較低,一般出現(xiàn)在17或18題,屬于送分題,估計(jì)以后這類題型仍會(huì)保留,不會(huì)有太大改變.解決此類問題,要根據(jù)已知條件,靈活運(yùn)用正弦定理或余弦定理,求邊角或?qū)⑦吔腔セ?
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D為邊AB上一點(diǎn),DA=DC.已知B=
π
4
,BC=1.
(Ⅰ)若DC=
6
3
,求角A的大。
(Ⅱ)若△BCD面積為
1
6
,求邊AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為邊BC上的一點(diǎn),BD=
1
2
DC
,∠ADB=120°,AD=2,若△ADC的面積為3-
3
,則∠BAC=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省三門峽市陜州中學(xué)高二(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

在△ABC中,D為邊BC上的一點(diǎn),,∠ADB=120°,AD=2,若△ADC的面積為,則∠BAC=( )
A.30°
B.45°
C.60°
D.45°或60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為邊AB上一點(diǎn),M為△ABC內(nèi)一點(diǎn),且滿足==+ ,則△AMD與△ABC的面積比

A.                B.                C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省會(huì)考題 題型:填空題

在△ABC中,D為邊AB的中點(diǎn),若向量,則向量=(    )。(用ab表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案