設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4。
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x0,y0)關(guān)于直線y=2x的對稱點(diǎn)為P1 (x1,y1),求3x1-4y1的取值范圍.
解:(1)依題意知,2a=4,∴a=2

,
∴所求橢圓C的方程為。
(2)∵點(diǎn)P(x0,y0)關(guān)于直線y=2x的對稱點(diǎn)為P1(x1,y1

解得:
∴3x1-4y1=-5x0
∵點(diǎn)P(x0,y0)在橢圓C:
∴-2≤x0≤2,則-10≤-5x0≤10
∴3x1-4y1的取值范圍為[-10,10]。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:專項題 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4。
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x0,y0)關(guān)于直線y=2x的對稱點(diǎn)為P1 (x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省珠海五中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x,,y)關(guān)于直線y=2x的對稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省德陽市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)過E(,0)作傾角為銳角的直線l交橢圓于A,B兩點(diǎn),若,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x,,y)關(guān)于直線y=2x的對稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x,,y)關(guān)于直線y=2x的對稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案