1.某校舉行運(yùn)動會入場儀式,全校師生750人.將其編號為1~750分為三個方陣,其中第一方陣為1~300號,第二方陣為301~700號,第三方陣為701~750號,若用系統(tǒng)抽樣的方法在三個方陣共抽取50人作為代表,且在第一段隨機(jī)抽得的號碼為3,則第一方陣抽取的人數(shù)為20.

分析 根據(jù)系統(tǒng)抽樣的方法的要求,先隨機(jī)抽取第一數(shù),再由總體個數(shù)除以樣本容量確定間隔,得出每一個組里的人數(shù)構(gòu)成以3為首項(xiàng),15為公差的等差數(shù)列,從而得出第一方陣抽取的人數(shù).

解答 解:由題意,隨機(jī)抽樣中,在第一段隨機(jī)抽得的號碼為3,
以后每隔$\frac{750}{50}$=15個號抽到一個人,
則構(gòu)成以3為首項(xiàng),15為公差的等差數(shù)列,
其通項(xiàng)公式為:an=3+15(n-1)=15n-12,
由1≤15n-12≤300,n∈N⇒1≤n≤20,
∴第一方陣抽取的人數(shù)為20.
故答案為:20.

點(diǎn)評 本題考查系統(tǒng)抽樣方法,本題解題的關(guān)鍵是看出每一個組里的人數(shù)構(gòu)成以3為首項(xiàng),15為公差的等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平行六面體ABCD-EFGH中,若$\overrightarrow{AG}$=x$\overrightarrow{AB}$-2y$\overrightarrow{BC}$+3z$\overrightarrow{DH}$,則x+y+z等于( 。
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.到F(2,0)和y軸的距離相等的動點(diǎn)的軌跡方程是y2=4(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在(x2+x-1)5的展開式中含x5的項(xiàng)的系數(shù)是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0,a≠1)是定義域R的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性并求使不等式f(x2+tx)+f(2x+1)>0在定義域上恒成立的t的取值范圍;
(3)若f(1)=$\frac{8}{3}$,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的外接圓半徑為2,a=2$\sqrt{3}$,則A=( 。
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,焦點(diǎn)在x軸上的橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{3}$=1(a>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上位于第一象限內(nèi)的一點(diǎn),且直線F2P與y軸的正半軸交于A點(diǎn),△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|F1Q|=4,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+a
(I)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在區(qū)間[-2,2]上的最小值為2,求它在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.用分?jǐn)?shù)指數(shù)冪表示下列各式:
(1)$\root{3}{{x}^{2}}$(x>0);(2)$\root{4}{(a+b)^{3}}$(a+b>0);(3)$\root{3}{(m-n)^{2}}$(m>n);
(4)$\sqrt{(m-n)^{4}}$(m>n);(5)$\sqrt{{p}^{6}{q}^{5}}$(q>0);(6)$\frac{{m}^{3}}{\sqrt{m}}$.

查看答案和解析>>

同步練習(xí)冊答案