已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象
(1)求函數(shù)解析式,寫出f(x)的單調(diào)減區(qū)間
(2)當(dāng)x∈[,],求f(x)的值域.
(3)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合.

【答案】分析:(1)由函數(shù)的最大值求得A的值,由周期求得ω=2,再根據(jù)五點(diǎn)法作圖求得,從而求得函數(shù)的解析式為.令,求得x的范圍,可得以f(x)的增區(qū)間.
(2)由x∈[,],根據(jù)正弦函數(shù)的定義域和值域求得sin(2x+)∈[-,1],從而得到函數(shù)的值域.
(3)由f(x)≥1 可得sin(x+)≥,再由2kπ+≤x+≤2kπ+,k∈z,求得x的范圍.
解答:解:(1)由圖象可得:A=2,---(1分),∴ω=2.---(3分)
+=,∴.----------(5分)
所以.------(6分)
,---(8分)
可得 .-----(9分)
所以f(x)的增區(qū)間是.-------(10分)
(2)由x∈[],可得2x+∈[,],∴sin(2x+)∈[-,1],
即函數(shù)的值域?yàn)閇-,1].
(3)由f(x)≥1 可得sin(x+)≥,…(10分)
所以,2kπ+≤x+≤2kπ+,k∈z,解得 2kπ≤x≤2kπ+,k∈z,
所以,使f(x)≥1 成立的x 的取值集合為[2kπ,2kπ+],k∈z. …(12分)
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的增區(qū)間、定義域和值域,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象
(1)求函數(shù)解析式,寫出f(x)的單調(diào)減區(qū)間
(2)當(dāng)x∈[
π
12
,
π
2
],求f(x)的值域.
(3)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象.
(1)求函數(shù)解析式;
(2)當(dāng)x∈R時(shí),求該函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心坐標(biāo);
(3)當(dāng)x∈R時(shí),寫出f(x)的單調(diào)增區(qū)間;
(4)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合;
(5)當(dāng)x∈[
π
12
,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆烏魯木齊一中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象.
(1)求函數(shù)解析式;
(2)當(dāng)x∈R時(shí),求該函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心坐標(biāo);
(3)當(dāng)x∈R時(shí),寫出f(x)的單調(diào)增區(qū)間;
(4)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合;
(5)當(dāng)x∈[,],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊一中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象.
(1)求函數(shù)解析式;
(2)當(dāng)x∈R時(shí),求該函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心坐標(biāo);
(3)當(dāng)x∈R時(shí),寫出f(x)的單調(diào)增區(qū)間;
(4)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合;
(5)當(dāng)x∈[,],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案