【題目】如圖,在平面直角坐標系中,點A,B,銳角α的終邊與單位圓O交于點P.
(1)用α的三角函數(shù)表示點P的坐標;
(2)當=-時,求α的值;
(3)在x軸上是否存在定點M,使得||=|恒成立?若存在,求出點M的坐標;若不存在,請說明理由.
【答案】(1)(cos α,sin α);(2)α=60°;(3)M(-2,0).
【解析】
用的三角函數(shù)的坐標法定義得到答案
首先寫出兩個向量的坐標,根據(jù),整理計算即可求出的值
假設(shè)存在定點,進行向量的模長運算,求得恒成立時的值
(1)用α的三角函數(shù)表示點P的坐標為(cos α,sin α).
(2),
=-時,
即+sin2α=-,
整理得到cos α=,所以銳角α=60°.
(3)在x軸上假設(shè)存在定點M,設(shè)M(x,0),=(cos α-x,sin α),
則由||=|恒成立,得到+cos α=(1-2xcos α+x2),整理得2(2+x)cos α=x2-4,
當x=-2時等式恒成立,所以存在M(-2,0).
科目:高中數(shù)學 來源: 題型:
【題目】某省組織了一次高考模擬考試,該省教育部門抽取了1000名考生的數(shù)學考試成績,并繪制成頻率分布直方圖如圖所示.
(Ⅰ)求樣本中數(shù)學成績在95分以上(含95分)的學生人數(shù);
(Ⅱ)已知本次模擬考試全省考生的數(shù)學成績X~N(μ,σ2),其中μ近似為樣本的平均數(shù),σ2近似為樣本方差,試估計該省的所有考生中數(shù)學成績介于100~138.2分的概率;
(Ⅲ)以頻率估計概率,若從該省所有考生中隨機抽取4人,記這4人中成績在[105,125)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學期望.
參考數(shù)據(jù): ≈18.9, ≈19.1, ≈19.4.
若Z∽N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.9826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9976.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】α、β是兩個平面,m、n是兩條直線,有下列四個命題:
①如果m⊥n , m⊥α , n∥β , 那么α⊥β.
②如果m⊥α , n∥α , 那么m⊥n.
③如果α∥β , m α , 那么m∥β.
④如果m∥n , α∥β , 那么m與α所成的角和n與β所成的角相等.
其中正確的命題有.(填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在長方形中,為的中點,為線段上一動點.現(xiàn)將沿折起,形成四棱錐.
圖1 圖2 圖3
(Ⅰ)若與重合,且(如圖2).
(ⅰ)證明:平面;
(ⅱ)求二面角的余弦值.
(Ⅱ)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù) 圖像上的點P( ,t )向左平移s(s﹥0) 個單位長度得到點P′.若 P′位于函數(shù)y=sin2x的圖像上,則( )
A.t= ,s的最小值為
B.t= ,s的最小值為
C.t= ,s的最小值為
D.t= ,s的最小值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從含有兩件正品a,b和一件次品c的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中,恰有一件是次品的概率。
(1)每次取出不放回;(2)每次取出放回;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設(shè)a=2,b= .
①求方程f(x)=2的根;
②若對于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實數(shù)m的最大值;
(2)若0<a<1,b>1,函數(shù)g(x)=f(x)﹣2有且只有1個零點,求ab的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,O為AC的中點,平面M為PD的中點。
(1)證明平面.
(2)證明平面 .
(3)求三棱錐P-MAC體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com