【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)證明:對于, 在區(qū)間上有極小值,且極小值大于0.
【答案】(1)(2)見解析
【解析】試題分析: (1)因為, ,曲線在點處的切線方程為: ,代入化簡即可; (2)因為,所以在區(qū)間上是單調(diào)遞增函數(shù).因為, , 所以,使得. 故在上單調(diào)遞減,在上單調(diào)遞增, 所以有極小值.因為,所以.構(gòu)造函數(shù)求導(dǎo)判斷單調(diào)性與最值即可得證.
試題解析:(Ⅰ) 的定義域為,
因為,所以,所以.
因為, ,
所以曲線在點處的切線方程為.
(Ⅱ) 因為,所以在區(qū)間上是單調(diào)遞增函數(shù).
因為, ,
所以,使得.
所以, ; , ,
故在上單調(diào)遞減,在上單調(diào)遞增,
所以有極小值.
因為,
所以.
設(shè), ,
則,
所以,
即在上單調(diào)遞減,所以,
即,所以函數(shù)的極小值大于0.
點睛:本題考查導(dǎo)數(shù)的幾何意義以及函數(shù)的單調(diào)性與極值問題. 函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)的幾何意義,就是曲線y=f(x)在點P(x0,y0)處的切線的斜率,過點P的切線方程為: .求函數(shù)y=f(x)在點P(x0,y0)處的切線方程與求函數(shù)y=f(x)過點P(x0,y0)的切線方程意義不同,前者切線有且只有一條,且方程為y-y0=f′(x0)(x-x0),后者可能不只一條.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x)的表達式;
(2)設(shè)函數(shù)g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在名男性駕駛員中,平均車速超過的有人,不超過的有人;在名女性駕駛員中,平均車速超過的有人,不超過的有人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認為平均車速超過100與性別有關(guān);
平均車速超過人數(shù) | 平均車速不超過人數(shù) | 合計 | |
男性駕駛?cè)藬?shù) | |||
女性駕駛?cè)藬?shù) | |||
合計 |
(Ⅱ)在被調(diào)查的駕駛員中,按分層抽樣的方法從平均車速不超過的人中抽取人,再從這人中采用簡單隨機抽樣的方法隨機抽取人,求這人恰好為名男生、名女生的概率.
參考公式與數(shù)據(jù):,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,且,設(shè)分別為的中點.
(1)求證:平面∥平面;
(2)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 平面, , , , 為線段上一點, , 為的中點.
(1)證明: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(log 3),c=f(21.6),則a,b,c的大小關(guān)系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={y|y=( )x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的頂點為坐標原點O,焦點F在軸正半軸上,準線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題:“若直線過定點(0,1),則 ”,
請判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號分別為的五批疫苗,供全市所轄的三個區(qū)市民注射,每個區(qū)均能從中任選其中一個批號的疫苗接種.
(1)求三個區(qū)注射的疫苗批號中恰好有兩個區(qū)相同的概率;
(2)記三個區(qū)選擇的疫苗批號的中位數(shù)為,求 的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com