分析 若g(x)=lnx,則函數(shù)的值域?yàn)镽,且函數(shù)為單調(diào)函數(shù),故方程g(x)=t有且只有一個(gè)根,故f(t)=1,
若g(x)=$\left\{\begin{array}{l}x,x≤0\\-{x^2}+2ax+a,x>0\end{array}$(a∈R),存在t使得f(t+2)>f(t)成立,則x>0時(shí),函數(shù)的最大值大于2,且對(duì)稱軸位于y軸右側(cè),解得答案.
解答 解:若g(x)=lnx,則函數(shù)的值域?yàn)镽,且函數(shù)為單調(diào)函數(shù),
故方程g(x)=t有且只有一個(gè)根,
故f(t)=1,
g(x)=$\left\{\begin{array}{l}x,x≤0\\-{x^2}+2ax+a,x>0\end{array}$,
當(dāng)t≤0時(shí),f(t)=1恒成立,
若存在t使得f(t+2)>f(t)成立,
則x>0時(shí),函數(shù)的最大值大于2,且對(duì)稱軸位于y軸右側(cè),
即$\left\{\begin{array}{l}a>0\\ \frac{-4a-4{a}^{2}}{-4}>2\end{array}\right.$,
解得:a>1,
故答案為:1,a>1
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn)及個(gè)數(shù)判斷,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題①②都正確 | B. | 命題①②都不正確 | ||
C. | 命題①正確,命題②不正確 | D. | 命題①不正確,命題②正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com