【題目】設函數(shù).
(Ⅰ)求的單調區(qū)間;
(Ⅱ)當時,試判斷零點的個數(shù);
(Ⅲ)當時,若對,都有()成立,求的最大值.
【答案】(1)當時,的單減區(qū)間為;當時,的單減區(qū)間為,單增區(qū)間為;(2)兩個;(3)0.
【解析】
(1)求出,分兩種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)當時,由(1)可知,在是單減函數(shù),在是單增函數(shù),由,,利用零點存在定理可得結果;(3)當,為整數(shù),且當時,恒成立,,利用導數(shù)求出的取值范圍,從而可得結果.
(1),
.
當時,在恒成立,
在是單減函數(shù).
當時,令,解之得.
從而,當變化時,,隨的變化情況如下表:
|
|
|
|
| - | 0 | + |
| 單調遞減 | 單調遞增 |
由上表中可知,在是單減函數(shù),在是單增函數(shù).
綜上,當時,的單減區(qū)間為;
當時,的單減區(qū)間為,單增區(qū)間為.
(2)當時,由(1)可知,在是單減函數(shù),在是單增函數(shù);
又,,.
,;
故在有兩個零點.
(3)當,為整數(shù),且當時,恒成立
.
令,只需;
又,
由(2)知,在有且僅有一個實數(shù)根,
在上單減,在上單增;
又,,
,且,
即代入式,得
.
而在為增函數(shù),,
即.
而,,
即所求的最大值為0.
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就某地居民的月收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在).
(1)求居民收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市通過抽樣調查的方法獲得了100戶居民某月用水量(單位:t)的頻率分布直方圖:
(Ⅰ)求這100戶居民該月用水量的平均值;
(Ⅱ)從該月用水量在和兩個區(qū)間的用戶中,用分層抽樣的方法邀請5戶的戶主共5人參加水價調整方案聽證會,現(xiàn)從這5人中隨機選取2人在會上進行陳述發(fā)言,求選取的2人均來自用水量低于2.5t的用戶的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)對一切x∈R恒成立,給出以下結論:
①;
②;
③f(x)的單調遞增區(qū)間是;
④函數(shù)y=f(x)既不是奇函數(shù)也不是偶函數(shù);
⑤存在經過點(a,b)的直線與函數(shù)f(x)的圖象不相交,其中正確結論為_____
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四校錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,邊長為4的正△PAD所在平面與平面ABCD垂直,點E是AD的中點,點Q是側棱PC的中點.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:PA∥平面BDQ;
(3)在線段AB上是否存在點F,使直線PF與平面PAD所成的角為30°?若存在,求出AF的長,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從全校參加數(shù)學競賽的學生的試卷中,抽取一個樣本,考察競賽的成績分布,將樣本分成組,繪成頻率分布直方圖,圖中從左到右各小組的長方形的高之比為,最右邊一組的頻數(shù)是.
(1)成績落在哪個范圍的人數(shù)最多?并求出該小組的頻數(shù)、頻率;
(2)估計這次競賽中,成績高于分的學生占總人數(shù)的百分百.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,,為的中點
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設為線段上一點,,若直線與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是菱形,,.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正切值;
(Ⅲ)設點在線段上,且二面角的余弦值為,求點到底面的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com