在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,,M、N分別為AB、SB的中點.
(1)證明:AC⊥SB;
(2)(理)求二面角N-CM-B的正切值;
(3)求點B到平面CMN的距離.

【答案】分析:法一:
(1)取AC中點D,連接SD、DB.由SA=SC,AB=BC,知SD⊥AC,BD⊥AC,由此能夠證明AC⊥SB.
(2)由AC⊥平面SDB,AC?平面ABC,知平面SDB⊥平面ABC.過N作NE⊥BD于E,則NE⊥平面ABC,過E作EF⊥CM于F,連接NF,則NF⊥CM,∠NFE為二面角N-CM-B的平面角.由此能求出二面角N-CM-B的正切值.
(3)在Rt△NEF中,由,知.由VB-CMN=VN-CMB,能求出點B到平面CMN的距離.
法二:
(1)取AC中點O,連接OS、OB.由SA=SC,AB=BC,知AC⊥SO,AC⊥BO.所以SO⊥平面ABC,SO⊥BO.以D為原點,DA為x軸,DB為y軸,DS為z軸,建立空間直角坐標系O-xyz,則,,由此能證明AC⊥SB.
(2)由,設為平面CMN的一個法向量,由,得.由向量法能求出二面角N-CM-B的正切值.
(3)由為平面CMN的一個法向量,能求出點B到平面CMN的距離.
解答:解法1:(1)取AC中點D,連接SD、DB.
∵SA=SC,AB=BC∴SD⊥AC,BD⊥AC,
∴AC⊥平面SDB,又SB?平面SDB,
∴AC⊥SB.…(4分)
(2)∵AC⊥平面SDB,AC?平面ABC,
∴平面SDB⊥平面ABC.
過N作NE⊥BD于E,則NE⊥平面ABC,
過E作EF⊥CM于F,連接NF,
則NF⊥CM,∠NFE為二面角N-CM-B的平面角.
∵平面SAC⊥平面ABC,SD⊥AC,
∴SD⊥平面ABC.
又NE⊥平面ABC,∴NE∥SD.
∵SN=NB,
,且ED=EB.
在正△ABC中,,
在Rt△NEF中,
∴二面角N-CM-B的正切值為.…(8分)
(3)在Rt△NEF中,,
,

設點B到平面CMN的距離為h,
∵VB-CMN=VN-CMB,NE⊥平面CMB,
,

即點B到平面CMN的距離為.…(14分)
解法2:(1)取AC中點O,連接OS、OB.
∵SA=SC,AB=BC,
∴AC⊥SO,AC⊥BO.
∵平面SAC⊥平面ABC,
平面SAC∩平面ABC=AC,
∴SO⊥平面ABC,∴SO⊥BO.
如圖所示建立空間直角坐標系O-xyz,
則A(2,0,0),,C(-2,0,0),,
,
,
∴AC⊥SB.…(6分)
(2)∵,
又C(-2,0,0),∴,
為平面CMN的一個法向量,
,
取z=1,,,

為平面ABC的一個法向量,
,


即二面角N-CM-B的正切值為.…(10分)
(3)由(1)(2)得
為平面CMN的一個法向量,,
∴點B到平面CMN的距離.…(14分)
點評:本題考查異面直線的證明,二面角正切值的求法和點到平面距離的計算,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)證明:SA⊥BC;
(Ⅲ)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點,將三角形ABC分割成三個小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請給出四面體內(nèi)切球半徑的計算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O為BC中點.
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點E,使二面角B-SC-E的平面角的余弦值為
15
5
?若存在,確定E點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
3
2
,3,則此三棱錐的外接球的表面積為( 。

查看答案和解析>>

同步練習冊答案