已知是定義在上的奇函數(shù),且,若恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對所有恒成立,求實數(shù)的取值范圍。

(1)增函數(shù),證明詳見解析;(2)

解析試題分析:(1)要判斷函數(shù)的單調(diào)性一般可用增函數(shù)和減函數(shù)的定義或利用導函數(shù)判斷,由于本題沒有函數(shù)解析式,再結(jié)合題目特點,適于用定義判斷,解決問題的關(guān)鍵是對照增函數(shù)和減函數(shù)的定義,再結(jié)合奇函數(shù)的條件,怎樣通過適當?shù)馁x值構(gòu)造出與相關(guān)的式子,再判斷符號解決,通過觀察,只要令即可;(2)不等式恒成立問題一般要轉(zhuǎn)化為函數(shù)的最值問題,先將原問題轉(zhuǎn)化為對任意成立,再構(gòu)造函數(shù),問題又轉(zhuǎn)化為任意恒成立,此時可對的系數(shù)的符號討論,但較為繁瑣,較為簡單的做法是只要滿足即可.
試題解析:(1)設(shè),則,是奇函數(shù)
由題設(shè)知
時 ,
上是增函數(shù)
(2)由(1)知,上是增函數(shù),且 
,對所有恒成立,需且只需
成立,
,對任意恒成立 需且只需滿足
,
考點:函數(shù)的單調(diào)性、不等式恒成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù).
(l)求的單調(diào)區(qū)間和極值;
(2)若對任意恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù).
(1)當時,證明:函數(shù)不是奇函數(shù);
(2)設(shè)函數(shù)是奇函數(shù),求的值;
(3)在(2)條件下,判斷并證明函數(shù)的單調(diào)性,并求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為R的函數(shù)是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷的單調(diào)性并證明;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù))滿足①;②
(1)求的解析式;
(2)若對任意實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取得極值.
(Ⅰ)求的解析式;
(Ⅱ)設(shè)是曲線上除原點外的任意一點,過的中點且垂直于軸的直線交曲線于點,試問:是否存在這樣的點,使得曲線在點處的切線與平行?若存在,求出點的坐標;若不存在,說明理由;
(Ⅲ)設(shè)函數(shù),若對于任意,總存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于定義域為的函數(shù),如果存在區(qū)間,同時滿足:
內(nèi)是單調(diào)函數(shù);②當定義域是,值域也是,則稱是函數(shù)
的“好區(qū)間”.
(1)設(shè)(其中),判斷是否存在“好區(qū)間”,并
說明理由;
(2)已知函數(shù)有“好區(qū)間”,當變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若內(nèi)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若為奇函數(shù),求的值;
(2)若=1,試證在區(qū)間上是減函數(shù);
(3)若=1,試求在區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案